Skip to main content
Log in

Energy release during disk accretion onto a rapidly rotating neutron star

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The energy release L s on the surface of a neutron star (NS) with a weak magnetic field and the energy release L d in the surrounding accretion disk depend on two independent parameters that determine its state (for example, mass M and cyclic rotation frequency f) and is proportional to the accretion rate. We derive simple approximation formulas illustrating the dependence of the efficiency of energy release in an extended disk and in a boundary layer near the NS surface on the frequency and sense of rotation for various NS equations of state. Such formulas are obtained for the quadrupole moment of a NS, for a gap between its surface and a marginally stable orbit, for the rotation frequency in an equatorial Keplerian orbit and in the marginally stable circular orbit, and for the rate of NS spinup via disk accretion. In the case of NS and disk counterrotation, the energy release during accretion can reach \(0.67\dot Mc^2 \). The sense of NS rotation is a factor that strongly affects the observed ratio of nuclear energy release during bursts to gravitational energy release between bursts in X-ray bursters. The possible existence of binary systems with NS and disk counterrotation in the Galaxy is discussed. Based on the static criterion for stability, we present a method of constructing the dependence of gravitational mass M on Kerr rotation parameter j and on total baryon mass (rest mass) m for a rigidly rotating neutron star. We show that all global NS characteristics can be expressed in terms of the function M(j, m) and its derivatives. We determine parameters of the equatorial circular orbit and the marginally stable orbit by using M(j, m) and an exact solution of the Einstein equations in a vacuum, which includes the following three parameters: gravitational mass M, angular momentum J, and quadrupole moment Ф2. Depending on Ф2, this solution can also be interpreted as a solution that describes the field of either two Kerr black holes or two Kerr disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Alpar, A. F. Cheng, M. A. Ruderman, and J. Shaham, Nature 300, 728 (1982).

    Article  ADS  Google Scholar 

  2. W. D. Arnett and R. L. Bowers, Astrophys. J., Suppl. Ser. 33, 415 (1977).

    Article  ADS  Google Scholar 

  3. J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astrophys. J. 178, 347 (1972).

    Article  ADS  Google Scholar 

  4. J. M. Bardeen and R. V. Wagoner, Astrophys. J. 167, 359 (1971).

    ADS  MathSciNet  Google Scholar 

  5. G. Biehle and R. D. Blanford, Astrophys. J. 411, 302 (1993).

    Article  ADS  Google Scholar 

  6. L. Bildsten, astro-ph/0001135.

  7. G. S. Bisnovatyi-Kogan and S. I. Blinnikov, Astron. Astrophys. 31, 391 (1974).

    ADS  Google Scholar 

  8. G. S. Bisnovatyi-Kogan and B. V. Komberg, Astron. Zh. 51, 373 (1974) [Sov. Astron. 18, 217 (1974)].

    ADS  Google Scholar 

  9. S. Bonazzola, E. Gourgoulhon, M. Salgado, and J. A. Marck, Astron. Astrophys. 278, 421 (1993).

    ADS  MathSciNet  Google Scholar 

  10. S. Bonazzola and J. Schneider, Astrophys. J. 191, 273 (1974).

    Article  ADS  Google Scholar 

  11. L. Burderi, A. Possenti, M. Colpi, et al., astro-ph/9904331.

  12. I. M. Butterworth and J. R. Ipser, Astrophys. J. 204, 200 (1976).

    ADS  MathSciNet  Google Scholar 

  13. G. Calamai, Astrophys. Space Sci. 8, 53 (1970).

    Article  ADS  Google Scholar 

  14. F. Camilo, D. R. Lorimer, P. Freire, et al., Astrophys. J. 535, 975 (2000); astro-ph/9911234.

    Article  ADS  Google Scholar 

  15. D. Chakrabarty and E. H. Morgan, Nature 394, 346 (1998).

    Article  ADS  Google Scholar 

  16. S. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Dover, New-York, 1986).

    Google Scholar 

  17. D. Christodolou and R. Ruffini, Phys. Rev. 4, 3552 (1973).

    Google Scholar 

  18. G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Astrophys. J. 424, 823 (1994).

    Article  ADS  Google Scholar 

  19. B. Datta, A. V. Thampan, and I. Bombaci, Astron. Astrophys. 334, 943 (1998); astro-ph/9801312.

    ADS  Google Scholar 

  20. N. A. Dmitriev and S. A. Kholin, Vopr. Kosmog. 9, 254 (1963).

    Google Scholar 

  21. K. Ebisawa, K. Mitsuda, and T. Hanawa, Astrophys. J. 367, 213 (1991).

    Article  ADS  Google Scholar 

  22. Y. Eriguchi and E. Mueller, Astron. Asrophys. 146, 260 (1985).

    ADS  Google Scholar 

  23. Y. Eriguchi, I. Hachisu, and K. Nomoto, Mon. Not. R. Astron. Soc. 266, 179 (1994).

    ADS  Google Scholar 

  24. F. J. Ernst, Phys. Rev. D. 50, 4993 (1994).

    ADS  MathSciNet  Google Scholar 

  25. L. S. Finn and S. Shapiro, Astrophys. J. 359, 444 (1990).

    Article  ADS  Google Scholar 

  26. G. Fodor, C. Hoenselaers, and Z. Perjes, J. Math. Phys. 30, 2252 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  27. B. Friedman and V. R. Pandharipande, Nucl. Phys. A 361, 502 (1981).

    ADS  Google Scholar 

  28. J. F. Friedman, J. R. Ipser, and L. Parker, Astrophys. J. 304, 115 (1986).

    Article  ADS  Google Scholar 

  29. M. Gilfanov, M. Revnivtsev, R. Sunyaev, and E. Churazov, Astron. Astrophys. 339, 483 (1998).

    ADS  Google Scholar 

  30. I. Hachisu, Astrophys. J., Suppl. Ser. 61, 479 (1986).

    Article  ADS  Google Scholar 

  31. I. Hachisu, Y. Eriguchi, and D. Sugimoto, Prog. Theor. Phys. 68, 191 (1982).

    ADS  Google Scholar 

  32. R. O. Hansen, J. Math. Phys. 15(1), 46 (1974).

    Article  Google Scholar 

  33. J. B. Hartle, Phys. Rep. 46, 202 (1978).

    Article  ADS  Google Scholar 

  34. J. B. Hartle and D. H. Sharp, Astrophys. J. 147, 317 (1967).

    Article  ADS  Google Scholar 

  35. J. B. Hartle, Astrophys. J. 195, 203 (1975).

    Article  ADS  Google Scholar 

  36. J. B. Hartle and K. S. Thorne, Astrophys. J. 158, 719 (1969).

    Article  ADS  Google Scholar 

  37. C. Hoenselaers, Prog. Theor. Phys. 72, 761 (1984).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. A. F. Illarionov and R. A. Sunyaev, Astron. Zh. 51, 1162 (1974) [Sov. Astron. 18, 691 (1974)].

    ADS  Google Scholar 

  39. N. A. Inogamov and R. A. Sunyaev, Pis’ma Astron. Zh. 25, 323 (1999) [Astron. Lett. 25, 269 (1999)].

    Google Scholar 

  40. W. Kley, Astron. Astrophys. 247, 95 (1991).

    ADS  Google Scholar 

  41. W. Kluzniak, Ph.D. Thesis (Stanford Univ., 1987).

  42. W. Kluzniak and R. V. Wagoner, Astrophys. J. 297, 548 (1985).

    Article  ADS  Google Scholar 

  43. H. Komatsu, Y. Eriguchi, and I. Hachisu, Mon. Not. R. Astron. Soc. 237, 355 (1989).

    ADS  Google Scholar 

  44. D. Kramer and G. Neugebauer, Phys. Lett. A75, 259 (1980).

    ADS  MathSciNet  Google Scholar 

  45. W. Laarakkers and E. Poisson, gr-qc/9709033.

  46. M. J. Lighthill, Mon. Not. R. Astron. Soc. 110, 339 (1950).

    ADS  MATH  MathSciNet  Google Scholar 

  47. L. Lindblom, Phys. Rev. D 58, 024008 (1998); gr-qc/9802072.

    Article  ADS  Google Scholar 

  48. V. M. Lipunov and K. A. Postnov, Astrophys. Space Sci. 106, 103 (1984).

    Article  ADS  Google Scholar 

  49. C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, Phys. Rev. Lett. 70, 379 (1993).

    Article  ADS  Google Scholar 

  50. V. S. Manko, E. W. Mielke, and J. D. Sanabria-Gómez, Phys. Rev. D 61, 081501 (2000); gr-qc/0001081.

    Article  ADS  Google Scholar 

  51. V. S. Manko, J. Martín, E. Ruíz, et al., Phys. Rev. D 49, 5144 (1994).

    ADS  MathSciNet  Google Scholar 

  52. V. S. Manko and E. Ruíz, Class. Quantum. Grav. 15, 2007 (1998).

    Article  ADS  Google Scholar 

  53. D. Markovic and F. K. Lamb, Rossi2000: Astrophysics with the Rossi X-ray Timing Explorer (NASA’s Goddard Space Flight Center, Greenbelt, 2000), p. E61.

    Google Scholar 

  54. S. L. W. McMillan and P. Hut, Astrophys. J. 467, 348 (1996).

    Article  ADS  Google Scholar 

  55. M. C. Miller and F. K. Lamb, Astrophys. J. 470, 1033 (1996).

    Article  ADS  Google Scholar 

  56. M. C. Miller, F. K. Lamb, and G. B. Cook, Astrophys. J. 509, 793 (1998); astro-ph/9805007.

    Article  ADS  Google Scholar 

  57. Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, New York, 1973).

    Google Scholar 

  58. G. Neugebauer, J. Phys. 13, L19 (1980).

    ADS  MathSciNet  Google Scholar 

  59. I. D. Novikov and V. P. Frolov, Physics of Black Holes (Nauka, Moscow, 1986).

    Google Scholar 

  60. T. Nozawa, N. Stergioulas, E. Gourgoulhon, and Y. Eriguchi, Astron. Astrophys. 132, 431N (1998); gr-qc/9804048.

    ADS  Google Scholar 

  61. J. P. Ostriker and J. W.-K. Mark, Astrophys. J. 151, 1075 (1968).

    ADS  Google Scholar 

  62. V. R. Pandharipande, Nucl. Phys. A 174, 641 (1971).

    ADS  Google Scholar 

  63. R. Popham and R. Narayan, Astrophys. J. 442, 337 (1995).

    Article  ADS  Google Scholar 

  64. P. Popham and R. Sunyaev, astro-ph/0004017.

  65. J. E. Pringle and M. J. Rees, Astron. Astrophys. 21, 1 (1972).

    ADS  Google Scholar 

  66. W. H. Ramsey, Mon. Not. R. Astron. Soc. 110, 325 (1950).

    ADS  MATH  MathSciNet  Google Scholar 

  67. D. G. Ravenhall and C. J. Pethick, Astrophys. J. 424, 846 (1994).

    Article  ADS  Google Scholar 

  68. R. Ruffini and J. A. Wheeler, Bull. Am. Phys. Soc. 15(11), 76 (1970).

    Google Scholar 

  69. F. D. Ryan, Phys. Rev. D 52, 5707 (1995).

    Article  ADS  Google Scholar 

  70. F. D. Ryan, Phys. Rev. D 55, 6081 (1997).

    Article  ADS  Google Scholar 

  71. M. Salgado, S. Bonazzola, E. Gourgulhon, and P. Haensel, Astron. Astrophys. 291, 155 (1994).

    ADS  Google Scholar 

  72. Z. F. Seidov, Astron. Zh. 48, 443 (1971) [Sov. Astron. 15, 347 (1971)].

    ADS  Google Scholar 

  73. N. I. Shakura and R. A. Sunyaev, Adv. Space Res. 8(2–3), 135 (1988).

    ADS  Google Scholar 

  74. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects (Wiley, New York, 1983; Mir, Moscow, 1985).

    Google Scholar 

  75. M. Shibata and M. Sasaki, Phys. Rev. D 58, 104011 (1998); gr-qc/9807046.

    ADS  Google Scholar 

  76. N. R. Sibgatullin, Oscillations and Waves in Strong Gravitational and Electromagnetic Fields (Nauka, Moscow, 1984; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  77. N. R. Sibgatullin and R. A. Sunyaev, Pis’ma Astron. Zh. 24, 894 (1998) [Astron. Lett. 24, 774 (1998)]; astro-ph/9811028.

    Google Scholar 

  78. N. R. Sibgatullin and R. A. Sunyaev, Pis’ma Astron. Zh. 26 (2000) [Astron. Lett. (2000) (in press)].

  79. H. C. Spruit and E. S. Phinney, Nature 393, 139 (1998).

    Article  ADS  Google Scholar 

  80. N. Stergioulas, http://pauli.phys.uwm.edu/Code/rns; http://www.livingreviews.org/Articles/Volume1/1998-8stergio.

  81. N. Stergioulas and J. L. Friedman, Astrophys. J. 444, 306 (1995).

    Article  ADS  Google Scholar 

  82. T. Stromayer, W. Zhang, J. H. Swank, et al., Astrophys. J. Lett. 498, L135 (1998); astro-ph/03119.

    ADS  Google Scholar 

  83. R. A. Sunyaev and N. I. Shakura, Pis’ma Astron. Zh. 12, 286 (1986) [Sov. Astron. Lett. 12, 117 (1986)].

    ADS  Google Scholar 

  84. J. L. Tassoul, Theory of Rotating Stars (Princeton Univ. Press, Princeton, 1978).

    Google Scholar 

  85. A. Thampan and B. Datta, Mon. Not. R. Astron. Soc. 297, 570 (1998).

    Article  ADS  Google Scholar 

  86. S. E. Thorsett and D. Chakrabarty, Astrophys. J. 512, 288 (1999); astro-ph/9803260.

    Article  ADS  Google Scholar 

  87. L. Titarchuk and V. Osherovich, astro-ph/0005375.

  88. M. van der Klis, astro-ph/0001167.

  89. R. A. D. Wijnands and M. van der Klis, Astrophys. J. Lett. 482, L65 (1997).

    Article  ADS  Google Scholar 

  90. R. B. Wiringa, V. Fiks, and A. Fabroccini, Phys. Rev. C 38, 1010 (1988).

    ADS  Google Scholar 

  91. M. N. Zaripov, N. R. Sibgatullin, and A. Chamorro, Prikl. Mat. Mekh. 59(5), 750 (1995).

    MathSciNet  Google Scholar 

  92. M. N. Zaripov, N. R. Sibgatullin, and A. Chamorro, Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 6, 61 (1994).

  93. Ya. B. Zel’dovich, Vopr. Kosmog. 9, 157 (1963).

    Google Scholar 

  94. Ya. B. Zel’dovich and I. D. Novikov, The Theory of Gravitation and Evolution of Stars (Nauka, Moscow, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 26, No. 11, 2000, pp. 813–841.

Original Russian Text Copyright © 2000 by Sibgatullin, Sunyaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibgatullin, N.R., Sunyaev, R.A. Energy release during disk accretion onto a rapidly rotating neutron star. Astron. Lett. 26, 699–724 (2000). https://doi.org/10.1134/1.1323277

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1323277

Key words

Navigation