Skip to main content
Log in

Accretion disk in the Hartle–Thorne spacetime

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider the circular motion of test particles in the gravitational field of a rotating deformed object described by the Hartle–Thorne metric. This metric represents an approximate solution to the vacuum Einstein field equations, accurate to second order in the angular momentum J and to first order in the mass quadrupole moment Q. We calculate the orbital parameters of neutral test particles on circular orbits (in accretion disks) such as angular velocity, \(\Omega\), total energy, E, angular momentum, L, and radius of the innermost stable circular orbit, \(R_{ISCO}\), as functions of the total mass, M, spin parameter, \(j=J/M^2\) and quadrupole parameter, \(q=Q/M^3\), of the source. We use the Novikov-Thorne-Page thin accretion disk model to investigate the characteristics of the disk. In particular, we analyze in detail the radiative flux, differential luminosity, and spectral luminosity of the accretion disk, which are the quantities that can be measured experimentally. We compare our results with those obtained in the literature for the Schwarzschild and Kerr metrics and the q-metric. It turns out that the Hartle–Thorne metric and the Kerr metric lead to similar results for the predicted flux and the differential and spectral luminosities, whereas the q-metric predicts different values. We compare the predicted values of M, j, and q with those of realistic neutron star models. Furthermore, we compare the values of \(R_{ISCO}\) with the static and rotating radii of neutron stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this article.

Notes

  1. Nevertheless, the incoming observations can also shed some new light on possible deviations from general relativity in the incoming years. Consequently, the possible existence of exotic compact objects cannot be ignored, as most observations of black hole candidates do not allow one to study the geometry near such astrophysical sources yet.

  2. The luminosity of the accretion disk in the Kerr spacetime has been extensively investigated in the scientific literature.

  3. It was shown that the static Hartle–Thorne solution with \(j=0\) reduces to the approximate Erez-Rosen solution in the limiting case of a small deformation [27]. However, before finding the coordinate transformations to establish the relationship between the parameters of the solutions, it was necessary to generalize the Erez-Rosen metric by applying a Zipoy-Voorhees transformation, which introduces a new parameter that must be fixed in order to obtain the required transformations [27].

  4. Some details about the Zipoy-Voorhees transformations that are necessary to compare the Erez-Rosen and Hartle–Thorne solutions can be found in Ref. [38].

  5. This solution contains as a specific case the solution combining both Erez Rosen and Kerr solutions. Using the prescriptions provided in Refs. [27, 34], it was demonstrated that this particular Quevedo-Mashhoon solution in the limiting case of slow rotation and small deformation was equivalent to the Hartle–Thorne solution [33].

  6. Additionally, it was shown that the so-called Sedrakyan-Chubaryan solution is equivalent to the the Hartle-Thorne solution [48].

  7. Sometimes, this metric is known in the literature as the Zipoy-Voorhees metric, \(\delta\)-metric and \(\gamma\)-metric.

  8. The formulas for the angular velocity \(\Omega\), angular momentum L, and energy E in the Hartle–Thorne spacetime were initially derived in Ref. [52]. However, it is important to exercise caution when referring to [52] due to the presence of certain typographical errors.

References

  1. Y.B. Zeldovich, I.D. Novikov, Relativistic Astrophysics. Vol.1: Stars and Relativity. University of Chicago Press, Chicago (1971)

  2. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman and Company, San Francisco, 1973)

    Google Scholar 

  3. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars. Wiley-VCH, New York (1983). https://doi.org/10.1002/9783527617661

  4. H.C. Ohanian, R. Ruffini, Gravitation and Spacetime, 3rd edn. (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  5. P.T. Chruściel, J.L. Costa, M. Heusler, Stationary Black Holes: Uniqueness and Beyond. Living Rev. Relat. 15(1), 7 (2012). https://doi.org/10.12942/lrr-2012-7. arXiv:1205.6112 [gr-qc]

    Article  ADS  Google Scholar 

  6. P. Haensel, A.Y. Potekhin, D.G. Yakovlev, (eds.) Neutron Stars 1 : Equation of State and Structure. Astrophysics and Space Science Library, vol. 326 (2007)

  7. K. Boshkayev, J.A. Rueda, R. Ruffini, I. Siutsou, On General Relativistic Uniformly Rotating White Dwarfs. Astrophys. J. 762(2), 117 (2013). https://doi.org/10.1088/0004-637X/762/2/117. arXiv:1204.2070 [astro-ph.SR]

    Article  ADS  CAS  Google Scholar 

  8. R. Belvedere, K. Boshkayev, J.A. Rueda, R. Ruffini, Uniformly rotating neutron stars in the global and local charge neutrality cases. Nucl. Phys. 921, 33–59 (2014). https://doi.org/10.1016/j.nuclphysa.2013.11.001. arXiv:1307.2836 [astro-ph.SR]

    Article  CAS  Google Scholar 

  9. D.F. Torres, Accretion disc onto a static non-baryonic compact object. Nucl. Phys. B 626(1–2), 377–394 (2002). https://doi.org/10.1016/S0550-3213(02)00038-X. arXiv:hep-ph/0201154 [hep-ph]

    Article  ADS  Google Scholar 

  10. F.S. Guzmán, Accretion disk onto boson stars: a way to supplant black hole candidates. Phys. Rev. D 73(2), 021501 (2006). https://doi.org/10.1103/PhysRevD.73.021501. arXiv:gr-qc/0512081 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  11. S. Beheshti, E. Gasperín, Marginally stable circular orbits in stationary axisymmetric spacetimes. Phys. Rev. D 94(2), 024015 (2016). https://doi.org/10.1103/PhysRevD.94.024015. arXiv:1512.08707 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. V. Cardoso, P. Pani, Testing the nature of dark compact objects: a status report. Living Rev. Relat. 22(1), 4 (2019). https://doi.org/10.1007/s41114-019-0020-4. arXiv:1904.05363 [gr-qc]

    Article  ADS  Google Scholar 

  13. P.O. Mazur, E. Mottola, Gravitational vacuum condensate stars. Proc. Nat. Acad. Sci. 101(26), 9545–9550 (2004). https://doi.org/10.1073/pnas.0402717101. arXiv:gr-qc/0407075 [gr-qc]

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gravity Collaboration, Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 615, 15 (2018). https://doi.org/10.1051/0004-6361/201833718. arXiv:1807.09409 [astro-ph.GA]

    Article  CAS  Google Scholar 

  15. A.M. Ghez, B.L. Klein, M. Morris, E.E. Becklin, High proper-motion stars in the vicinity of sagittarius A*: evidence for a supermassive black hole at the center of our galaxy. Astrophys. J. 509(2), 678–686 (1998). https://doi.org/10.1086/306528. arXiv:astro-ph/9807210 [astro-ph]

    Article  ADS  Google Scholar 

  16. A.M. Ghez, M. Morris, E.E. Becklin, A. Tanner, T. Kremenek, The accelerations of stars orbiting the Milky Way’s central black hole. Nature 407(6802), 349–351 (2000). https://doi.org/10.1038/35030032. arXiv:astro-ph/0009339 [astro-ph]

    Article  ADS  CAS  PubMed  Google Scholar 

  17. R.A. Remillard, J.E. McClintock, X-Ray Properties of Black-Hole Binaries. Annual Rev. Astron. Astrophys. 44(1), 49–92 (2006). https://doi.org/10.1146/annurev.astro.44.051905.092532. arXiv:astro-ph/0606352 [astro-ph]

    Article  ADS  Google Scholar 

  18. B.P.e. Abbott, Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102arXiv:1602.03837 [gr-qc]

  19. Abbott, B.P.e.: Tests of general relativity with GW150914. Phys. Rev. Lett. 116(22), 221101 (2016) https://doi.org/10.1103/PhysRevLett.116.221101arXiv:1602.03841 [gr-qc]

  20. Event horizon telescope collaboration: first M87 Event Horizon Telescope Results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875(1), 1 (2019) https://doi.org/10.3847/2041-8213/ab0ec7arXiv:1906.11238 [astro-ph.GA]

  21. M. Abishev, K. Boshkayev, H. Quevedo, S. Toktarbay, Accretion disks around a mass with quadrupole. In: Hsu, J.-P. et al. (eds.) Gravitation, Astrophysics, and Cosmology, p. 185 (2016). https://doi.org/10.1142/9789814759816_0026

  22. M.A. Abramowicz, P.C. Fragile, Foundations of Black Hole Accretion Disk Theory. Living Rev. Relat. 16(1), 1 (2013). https://doi.org/10.12942/lrr-2013-1. arXiv:1104.5499 [astro-ph.HE]

    Article  ADS  Google Scholar 

  23. N. Andersson, G.L. Comer, Slowly rotating general relativistic superfluid neutron stars. Class. Quant. Gravity 18(6), 969–1002 (2001). https://doi.org/10.1088/0264-9381/18/6/302. arXiv:gr-qc/0009089 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  24. N. Stergioulas, Rotating Stars in Relativity. Living Rev. Relat. 6(1), 3 (2003). https://doi.org/10.12942/lrr-2003-3. arXiv:gr-qc/0302034 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  25. E. Berti, N. Stergioulas, Approximate matching of analytic and numerical solutions for rapidly rotating neutron stars. Mon. Not. Roy. Astr. Soc. 350(4), 1416–1430 (2004). https://doi.org/10.1111/j.1365-2966.2004.07740.x. arXiv:gr-qc/0310061 [gr-qc]

    Article  ADS  Google Scholar 

  26. E. Berti, F. White, A. Maniopoulou, M. Bruni, Rotating neutron stars: an invariant comparison of approximate and numerical space-time models. Mon. Not. Roy. Astr. Soc. 358(3), 923–938 (2005). https://doi.org/10.1111/j.1365-2966.2005.08812.x. arXiv:gr-qc/0405146 [gr-qc]

    Article  ADS  Google Scholar 

  27. B. Mashhoon, D.S. Theiss, Relativistic lunar theory. Nuovo Cimento B Serie 106(5), 545–571 (1991). https://doi.org/10.1007/BF02726789

    Article  ADS  Google Scholar 

  28. I.D. Novikov, K.S. Thorne, Astrophysics of black holes. In: Black Holes (Les Astres Occlus), p. 343 (1973)

  29. D.N. Page, K.S. Thorne, Disk-accretion onto a black hole. Time-averaged structure of accretion disk. Astrophys. J. 191, 499–506 (1974) https://doi.org/10.1086/152990

  30. K. Boshkayev, D. Malafarina, A model for a dark matter core at the Galactic Centre. Mon. Not. Roy. Astr. Soc. 484(3), 3325–3333 (2019). https://doi.org/10.1093/mnras/stz219. arXiv:1811.04061 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  31. E. Kurmanov, K. Boshkayev, R. Giambò, T. Konysbayev, O. Luongo, D. Malafarina, H. Quevedo, Accretion disk luminosity for black holes surrounded by dark matter with anisotropic pressure. Astrophys. J. 925(2), 210 (2022). https://doi.org/10.3847/1538-4357/ac41d4

    Article  ADS  CAS  Google Scholar 

  32. K. Boshkayev, T. Konysbayev, Y. Kurmanov, O. Luongo, D. Malafarina, Accretion disk luminosity for black holes surrounded by dark matter with tangential pressure. Astrophys. J. 936(2), 96 (2022). https://doi.org/10.3847/1538-4357/ac8804. arXiv:2205.04208 [gr-qc]

    Article  ADS  Google Scholar 

  33. D. Bini, A. Geralico, O. Luongo, H. Quevedo, Generalized Kerr spacetime with an arbitrary mass quadrupole moment: geometric properties versus particle motion. Class. Quant. Gravity 26(22), 225006 (2009). https://doi.org/10.1088/0264-9381/26/22/225006. arXiv:0909.4150 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  34. J.B. Hartle, K.S. Thorne, Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars. Astrophys. J. 153, 807 (1968) https://doi.org/10.1086/149707

  35. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact solutions of Einstein’s field equations. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511535185

  36. R. Geroch, Multipole moments. II. Curved space. J. Math. Phys. 11(8), 2580–2588 (1970) https://doi.org/10.1063/1.1665427

  37. R.O. Hansen, Multipole moments of stationary space-times. J. Math. Phys. 15(1), 46–52 (1974). https://doi.org/10.1063/1.1666501

    Article  ADS  MathSciNet  Google Scholar 

  38. K. Boshkayev, H. Quevedo, G. Nurbakyt, A. Malybayev, A. Urazalina, The Erez-rosen solution versus the Hartle-Thorne solution. Symmetry 11(10), 1324 (2019). https://doi.org/10.3390/sym11101324. arXiv:1909.10949 [gr-qc]

    Article  ADS  Google Scholar 

  39. F. Frutos-Alfaro, M. Soffel, On the post-linear quadrupole-quadrupole metric. Revista de Matemática: Teoría y Aplicaciones 24, 239–255 (2015). arXiv:1507.04264 [gr-qc]

    MathSciNet  Google Scholar 

  40. K. Boshkayev, A. Malybayev, H. Quevedo, G. Nurbakyt, A. Taukenova, A. Urazalina, The correspondence of the erez-rosen solution with the hartle-thorne solution in the limiting case of \(m^2\) and \(q\). News of Nat. Acad. Sci. RK. 5(333), 19–27 (2020)

  41. H. Quevedo, B. Mashhoon, Exterior gravitational field of a rotating deformed mass. Phys. Lett. A 109(1–2), 13–18 (1985). https://doi.org/10.1016/0375-9601(85)90381-0

    Article  ADS  MathSciNet  Google Scholar 

  42. H. Quevedo, General static axisymmetric solution of Einstein’s vacuum field equations in prolate spheroidal coordinates. Phys. Rev. D 39(10), 2904–2911 (1989). https://doi.org/10.1103/PhysRevD.39.2904

    Article  ADS  MathSciNet  CAS  Google Scholar 

  43. H. Quevedo, Multipole moments in general relativity—static and stationary vacuum solution. Fortschritte der Physik 38(10), 733–840 (1990). https://doi.org/10.1002/prop.2190381002

    Article  ADS  MathSciNet  Google Scholar 

  44. H. Quevedo, B. Mashhoon, Exterior gravitational field of a charged rotating mass with arbitrary quadrupole moment. Phys. Lett. A 148(3–4), 149–153 (1990). https://doi.org/10.1016/0375-9601(90)90770-O

    Article  ADS  MathSciNet  Google Scholar 

  45. H. Quevedo, B. Mashhoon, Generalization of Kerr spacetime. Phys. Rev. D 43(12), 3902–3906 (1991). https://doi.org/10.1103/PhysRevD.43.3902

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. K. Boshkayev, H. Quevedo, R. Ruffini, Gravitational field of compact objects in general relativity. Phys. Rev. D 86(6), 064043 (2012). https://doi.org/10.1103/PhysRevD.86.064043. arXiv:1207.3043 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  47. K. Yagi, K. Kyutoku, G. Pappas, N. Yunes, T.A. Apostolatos, Effective no-hair relations for neutron stars and quark stars: relativistic results. Phys. Rev. D 89(12), 124013 (2014). https://doi.org/10.1103/PhysRevD.89.124013. arXiv:1403.6243 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  48. K. Boshkayev, H. Quevedo, S. Toktarbay, B. Zhami, M. Abishev, On the equivalence of approximate stationary axially symmetric solutions of the Einstein field equations. Gravit. Cosmol. 22(4), 305–311 (2016). https://doi.org/10.1134/S0202289316040046. arXiv:1510.02035 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  49. A. Allahyari, H. Firouzjahi, B. Mashhoon, Quasinormal modes of a black hole with quadrupole moment. Phys. Rev. D 99(4), 044005 (2019). https://doi.org/10.1103/PhysRevD.99.044005. arXiv:1812.03376 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  50. F. Frutos-Alfaro, M. Soffel, On relativistic multipole moments of stationary space-times. R. Soc. Open Sci. 5(7), 180640 (2018). https://doi.org/10.1098/rsos.180640. arXiv:1606.07173 [gr-qc]

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  51. A. Allahyari, H. Firouzjahi, B. Mashhoon, Quasinormal modes of generalized black holes: \(\delta\)-Kerr spacetime. Class. Quant. Gravity 37(5), 055006 (2020). https://doi.org/10.1088/1361-6382/ab6860. arXiv:1908.10813 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  52. M.A. Abramowicz, G.J.E. Almergren, W. Kluzniak, A.V. Thampan, The Hartle-Thorne circular geodesics. arXiv e-prints, 0312070 (2003) https://doi.org/10.48550/arXiv.gr-qc/0312070arXiv:gr-qc/0312070 [gr-qc]

  53. C. Bambi, S. Nampalliwar, Quasi-periodic oscillations as a tool for testing the Kerr metric: a comparison with gravitational waves and iron line. Europhys. Lett. (EPL ) 116(3), 30006 (2016). https://doi.org/10.1209/0295-5075/116/30006. arXiv:1604.02643 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  54. C. Bambi, E. Barausse, Constraining the quadrupole moment of stellar-mass black hole candidates with the continuum fitting method. Astrophys. J. 731(2), 121 (2011). https://doi.org/10.1088/0004-637X/731/2/121. arXiv:1012.2007 [gr-qc]

    Article  ADS  Google Scholar 

  55. K. Boshkayev, E. Gasperín, A.C. Gutiérrez-Piñeres, H. Quevedo, S. Toktarbay, Motion of test particles in the field of a naked singularity. Phys. Rev. D 93(2), 024024 (2016). https://doi.org/10.1103/PhysRevD.93.024024. arXiv:1509.03827 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  56. K. Boshkayev, T. Konysbayev, E. Kurmanov, O. Luongo, D. Malafarina, H. Quevedo, Luminosity of accretion disks in compact objects with a quadrupole. Phys. Rev. D 104(8), 084009 (2021). https://doi.org/10.1103/PhysRevD.104.084009. arXiv:2106.04932 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  57. C. Bambi, A code to compute the emission of thin accretion disks in non-kerr spacetimes and test the nature of black hole candidates. Astrophys. J. 761(2), 174 (2012). https://doi.org/10.1088/0004-637X/761/2/174. arXiv:1210.5679 [gr-qc]

    Article  ADS  Google Scholar 

  58. K. Boshkayev, A. Idrissov, O. Luongo, D. Malafarina, Accretion disc luminosity for black holes surrounded by dark matter. Mon. Not. Roy. Astr. Soc. 496(2), 1115–1123 (2020). https://doi.org/10.1093/mnras/staa1564. arXiv:2006.01269 [astro-ph.HE]

    Article  ADS  CAS  Google Scholar 

  59. F. Cipolletta, C. Cherubini, S. Filippi, J.A. Rueda, R. Ruffini, Fast rotating neutron stars with realistic nuclear matter equation of state. Phys. Rev. D 92(2), 023007 (2015). https://doi.org/10.1103/PhysRevD.92.023007. arXiv:1506.05926 [astro-ph.SR]

    Article  ADS  CAS  Google Scholar 

  60. J.M. Lattimer, M. Prakash, Neutron star structure and the equation of state. Astrophys. J. 550(1), 426–442 (2001). https://doi.org/10.1086/319702. arXiv:astro-ph/0002232 [astro-ph]

    Article  ADS  Google Scholar 

  61. J.M. Lattimer, M. Prakash, The physics of neutron stars. Science 304(5670), 536–542 (2004). https://doi.org/10.1126/science.1090720. arXiv:astro-ph/0405262 [astro-ph]

    Article  ADS  CAS  PubMed  Google Scholar 

  62. J.M. Lattimer, M. Prakash, Neutron star observations: prognosis for equation of state constraints. Phys. Rep. 442(1–6), 109–165 (2007). https://doi.org/10.1016/j.physrep.2007.02.003

    Article  ADS  CAS  Google Scholar 

  63. J.M. Lattimer, M. Prakash, The equation of state of hot, dense matter and neutron stars. Phys. Rep. 621, 127–164 (2016). https://doi.org/10.1016/j.physrep.2015.12.005. arXiv:1512.07820 [astro-ph.SR]arXiv:1512.07820 [astro-ph.SR]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  64. J.M.Z. Pretel, M.F.A. da Silva, Stability and gravitational collapse of neutron stars with realistic equations of state. Mon. Not. Roy. Astr. Soc. 495(4), 5027–5039 (2020). https://doi.org/10.1093/mnras/staa1493. arXiv:2005.13651 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  65. S.K. Greif, K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Equation of state constraints from nuclear physics, neutron star masses, and future moment of inertia measurements. Astrophys. J. 901(2), 155 (2020). https://doi.org/10.3847/1538-4357/abaf55. arXiv:2005.14164 [astro-ph.HE]

    Article  ADS  Google Scholar 

  66. N. Takibayev, D. Nasirova, K. Katō, V. Kurmangaliyeva, Excited nuclei, resonances and reactions in neutron star crusts. In: Journal of Physics Conference Series, vol. 940, p. 012058 (2018). https://doi.org/10.1088/1742-6596/940/1/012058

  67. N. Takibayev, V.O. Kurmangaliyeva, K. Katō, V.S. Vasilevsky, Few-Body Reactions and Processes in Neutron Star Envelopes, pp. 157–161. Springer, Cham (2020)

  68. R. Belvedere, D. Pugliese, J.A. Rueda, R. Ruffini, S.-S. Xue, Neutron star equilibrium configurations within a fully relativistic theory with strong, weak, electromagnetic, and gravitational interactions. Nucl. Phys. 883, 1–24 (2012). https://doi.org/10.1016/j.nuclphysa.2012.02.01810.48550/arXiv.1202.6500. arXiv:1202.6500 [astro-ph.SR]

    Article  CAS  Google Scholar 

  69. J. Boguta, A.R. Bodmer, Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. 292(3), 413–428 (1977). https://doi.org/10.1016/0375-9474(77)90626-1

    Article  MathSciNet  Google Scholar 

  70. J.B. Hartle, Slowly rotating relativistic stars. I. Equations of structure. Astrophys. J. 150, 1005 (1967). https://doi.org/10.1086/149400

    Article  ADS  Google Scholar 

  71. D.G. Yakovlev, General relativity and neutron stars. Int. J. Mod. Phys. A 31, 1641017 (2016). https://doi.org/10.1142/S0217751X16410177

    Article  ADS  CAS  Google Scholar 

  72. I. Bombaci, The maximum mass of a neutron star. Astron. Astrophys. 305, 871 (1996)

    ADS  CAS  Google Scholar 

  73. V. Kalogera, G. Baym, The maximum mass of a neutron star. Astrophys. J. Lett. 470, 61 (1996). https://doi.org/10.1086/310296. arXiv:astro-ph/9608059 [astro-ph]

    Article  ADS  Google Scholar 

  74. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, A two-solar-mass neutron star measured using Shapiro delay. Nature 467(7319), 1081–1083 (2010). https://doi.org/10.1038/nature09466. arXiv:1010.5788 [astro-ph.HE]

    Article  ADS  CAS  PubMed  Google Scholar 

  75. L. Rezzolla, E.R. Most, L.R. Weih, Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars. Astrophys. J. Lett. 852(2), 25 (2018). https://doi.org/10.3847/2041-8213/aaa401. arXiv:1711.00314 [astro-ph.HE]

    Article  ADS  CAS  Google Scholar 

  76. A. Tlemissov, Z. Tlemissova, K. Boshkayev, A. Urazalina, H. Quevedo, Analysis of the equations of state for neutron stars. News of the National Academy of Sciences of the Republic of Kazakhstan. Phys. Math. Ser. 5(333), 43–52 (2020)

  77. K.-W. Lo, L.-M. Lin, The spin parameter of uniformly rotating compact stars. Astrophys. J. 728(1), 12 (2011). https://doi.org/10.1088/0004-637X/728/1/12. arXiv:1011.3563 [astro-ph.HE]

    Article  ADS  Google Scholar 

  78. B. Qi, N.-B. Zhang, B.-Y. Sun, S.-Y. Wang, J.-H. Gao, A key factor to the spin parameter of uniformly rotating compact stars: crust structure. Res. Astron. Astrophys. 16(4), 60 (2016). https://doi.org/10.1088/1674-4527/16/4/060. arXiv:1408.1654 [astro-ph.SR]

    Article  ADS  CAS  Google Scholar 

  79. K. Boshkayev, J.A. Rueda, M. Muccino, Main parameters of neutron stars from quasi-periodic oscillations in low mass X-ray binaries. In: Bianchi, M., Jansen, R.T., Ruffini, R. (eds.) Fourteenth Marcel Grossmann Meeting - MG14, pp. 3433–3440 (2018). https://doi.org/10.1142/9789813226609_0442

  80. J.e. Antoniadis, A massive pulsar in a compact relativistic binary. Science 340(6131), 448 (2013) https://doi.org/10.1126/science.1233232arXiv:1304.6875 [astro-ph.HE]

  81. H.T. Cromartie et al., Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 4, 72–76 (2020). https://doi.org/10.1038/s41550-019-0880-2. arXiv:1904.06759 [astro-ph.HE]

    Article  ADS  Google Scholar 

  82. J.E. Trümper, V. Burwitz, F. Haberl, V.E. Zavlin, The puzzles of RX J1856.5-3754: neutron star or quark star? Nuclear Physics B Proceedings Supplements 132, 560–565 (2004) https://doi.org/10.1016/j.nuclphysbps.2004.04.094arXiv:astro-ph/0312600 [astro-ph]

  83. J.W.T. Hessels, S.M. Ransom, I.H. Stairs, P.C.C. Freire, V.M. Kaspi, F. Camilo, A radio pulsar spinning at 716 Hz. Science 311(5769), 1901–1904 (2006). https://doi.org/10.1126/science.1123430. arXiv:astro-ph/0601337 [astro-ph]

    Article  ADS  CAS  PubMed  Google Scholar 

  84. C.O. Heinke, G.B. Rybicki, R. Narayan, J.E. Grindlay, A hydrogen atmosphere spectral model applied to the neutron star X7 in the globular cluster 47 tucanae. Astrophys. J. 644(2), 1090–1103 (2006). https://doi.org/10.1086/503701. arXiv:astro-ph/0506563 [astro-ph]

    Article  ADS  CAS  Google Scholar 

  85. J.E. Trümper, Observations of neutron stars and the equation of state of matter at high densities. Prog. Particle Nucl. Phys. 66(3), 674–680 (2011). https://doi.org/10.1016/j.ppnp.2011.01.018

    Article  ADS  CAS  Google Scholar 

  86. K. Boshkayev, J. Rueda, M. Muccino, Extracting multipole moments of neutron stars from quasi-periodic oscillations in low mass X-ray binaries. Astron. Rep. 59(6), 441–446 (2015). https://doi.org/10.1134/S1063772915060050

    Article  ADS  Google Scholar 

Download references

Acknowledgements

YeK acknowledges Grant No. AP19575366, TK acknowledges Grant No. AP19174979, KB and OL acknowledge Grant No. AP19680128, MM and AU acknowledge Grant No. BR21881941 from the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan. KB is grateful to the Departments of Physics and Mathematics at the University of Camerino (UniCam) for the academic mobility provided by Erasmus+ program “I CAMERIN01” (2022-1-IT02-KA171-HED-000073309), during the period in which this manuscript has been written. He is particularly grateful to prof. Carlo Lucheroni for his economical support at UniCam. OL is grateful to INAF, National Institute of Astrophysics, for the support and in particular to Roberto della Ceca, Gaetano Telesio and Filippo M. Zerbi for discussions. It is also a pleasure to acknowledge Carlo Cafaro and Roberto Giambò for fruitful discussions on the subject of this paper. The work of HQ was partially supported by UNAM-DGAPA-PAPIIT, Grant No. 114520, and CONACYT-Mexico, Grant No. A1-S-31269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yergali Kurmanov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boshkayev, K., Konysbayev, T., Kurmanov, Y. et al. Accretion disk in the Hartle–Thorne spacetime. Eur. Phys. J. Plus 139, 273 (2024). https://doi.org/10.1140/epjp/s13360-024-05072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05072-8

Navigation