Skip to main content
Log in

A comparative study of the atomic hydrogen penetration into thin vanadium films and silicon oxide-gallium arsenide structures

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

It was established that the laws of atomic hydrogen penetration from an arc reflection discharge gap with a hollow cathode and self-heating element into GaAs samples coated with a thin SiO2 film differ significantly from the laws observed for the hydrogenation of thin vanadium films. The amount of hydrogen penetrating into the SiO2/GaAs system decreases with increasing atomic hydrogen concentration in the gas phase. This is apparently related to a decrease in the probability of hydrogen atoms penetrating into the substrate, which is suggested to drop significantly with decreasing atomic energy and/or increasing hydrogen content in a thin subsurface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hydrogen in Metals, Ed. by G. Alefeld and J. Voekl (Springer-Verlag, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  2. E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen (Springer-Verlag, Berlin, 1976; Metallurgiya, Moscow, 1980).

    Google Scholar 

  3. Interaction of Hydrogen with Metals, Ed. by A. P. Zakharov (Nauka, Moscow, 1987).

    Google Scholar 

  4. A. Y. Polyakov, N. B. Smirnov, A. A. Chelniy, et al., Solid-State Electron. 38(4), 771 (1995).

    Article  Google Scholar 

  5. V. A. Kagadei and D. I. Proskurovsky, J. Vac. Sci. Technol. A 16(4), 2556 (1998).

    Article  ADS  Google Scholar 

  6. R. Morrow, J. Appl. Phys. 66(7), 2973 (1989).

    Article  ADS  Google Scholar 

  7. N. Watanabe, T. Nittono, I. Hirishi, et al., J. Appl. Phys. 73(12), 8146 (1993).

    Article  ADS  Google Scholar 

  8. A. M. Bruneteau, G. Hollos, M. Bacal, and J. Bretagne, J. Appl. Phys. 67(12), 7254 (1990).

    Article  ADS  Google Scholar 

  9. Yu. P. Raizer, The Physics of Gas Discharge (Nauka, Moscow, 1987).

    Google Scholar 

  10. E. C. Samano, W. E. Carr, M. Siedl, and B. S. Lee, Rev. Sci. Instrum. 64(10), 2746 (1993).

    Article  ADS  Google Scholar 

  11. T. J. Sommerer and M. J. Kushner, J. Appl. Phys. 70(3), 1240 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 26, No. 20, 2000, pp. 75–81.

Original Russian Text Copyright © 2000 by Bozhkov, Kagade\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Proskurovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Romas’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozhkov, V.G., Kagadei, V.A., Proskurovskii, D.I. et al. A comparative study of the atomic hydrogen penetration into thin vanadium films and silicon oxide-gallium arsenide structures. Tech. Phys. Lett. 26, 926–928 (2000). https://doi.org/10.1134/1.1321241

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1321241

Keywords

Navigation