Skip to main content
Log in

Shock waves with large energy losses by direct radiation from the front

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Highly nonadiabatic shock waves are formed at an early stage of a supernova explosion inside a stellar wind because of the large energy losses by direct radiation from the front. The properties of such waves are considered for velocities of (5−25)×103km s−1 and gas densities of 10−17−10−10 g cm−3. A critical energy flux going to “infinity” that separates two modes is shown to exist. If the flux is lower than the critical one, then energy losses cause even an increase in the post-shock temperature. An excess of the flux over its critical value results in an abrupt cooling and in a strong compression of the gas. For the flux equal to the critical one, the post-shock gas velocity matches the isothermal speed of sound. Approximate formulas are given for estimating the degree of gas compression and the post-shock radiation-to-gas pressure ratio at energy losses equal to the critical ones and for the limiting compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Blinnikov and O. S. Bartunov, Astron. Astrophys. 273, 106 (1993).

    ADS  Google Scholar 

  2. R. A. Chevalier, Astrophys. J. 258, 790 (1982).

    Article  ADS  Google Scholar 

  3. R. A. Chevalier and R. I. Klein, Astrophys. J. 234, 597 (1979).

    Article  ADS  Google Scholar 

  4. S. W. Falk and W. D. Arnett, Astrophys. J., Suppl. Ser. 33, 515 (1977).

    Article  ADS  Google Scholar 

  5. E. K. Grasberg, Baltic Astron. 3, 252 (1994).

    ADS  Google Scholar 

  6. E. K. Grasberg, V. S. Imshennik, and D. K. Nadyozhin, Astrophys. Space Sci. 10, 28 (1971).

    ADS  Google Scholar 

  7. E. K. Grasberg and D. K. Nadyozhin, Astron. Zh. 64,63 (1987) [Sov. Astron. 31, 31 (1987)].

  8. V. S. Imshennik, Fiz. Plazmy 1, 202 (1975)[Sov. J. Plasma Phys. 1, 108 (1975)].

    Google Scholar 

  9. V. S. Imshennik, Zh. Éksp. Teor. Fiz. 42, 236 (1962).

    Google Scholar 

  10. V. S. Imshennik and Yu. I. Morozov, Astron. Zh. 46, 800 (1969) [Sov. Astron. 13, 628 (1969)].

    ADS  Google Scholar 

  11. V. S. Imshennik and Yu. I. Morozov, Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 8 (1964).

    Google Scholar 

  12. I. A. Klimishin, Shock Waves in Stellar Envelopes (Nauka, Moscow, 1984).

    Google Scholar 

  13. Yu. I. Morozov, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 42 (1966).

    Google Scholar 

  14. D. K. Nadyozhin, Astrophys. Space Sci. 112, 225 (1985).

    Article  MATH  ADS  Google Scholar 

  15. D. K. Nadyozhin, Preprint No. 1, ITÉF (Institute of Theoretical and Experimental Physics, Moscow, 1981).

  16. M. A. Tsikulin and E. G. Popov, in Radiative Properties of Sock Waves (Nauka, Moscow, 1977).

    Google Scholar 

  17. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966, 2nd ed.; Academic Press, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis'ma v Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 26, No. 9, 2000, pp. 676–682.

Original Russian Text Copyright © 2000 by Grasberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasberg, E.K. Shock waves with large energy losses by direct radiation from the front. Astron. Lett. 26, 582–588 (2000). https://doi.org/10.1134/1.1307892

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1307892

Key words

Navigation