Skip to main content
Log in

Quasihard-sphere model in simulation of the processes of particle scattering

  • Gases and Fluids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A model of interatomic potentials of interaction is suggested for static simulation of the processes of elastic scattering of atomic particles by atoms of gas, plasma, and solid. In the developed model, the atomic particle radii, whose magnitude depends on the energy of their relative motion, are internal parameters. The suggested quasihard-sphere model enables one to simulate elastic processes of scattering of atomic particles, using different interatomic potentials of interaction with relatively high rates of statistical simulation characteristic of simulation within the hard-sphere model. The Born-Mayer potential is selected as the interatomic potential of interaction and modified for a wide class of partners in atomic collisions. It is demonstrated that the suggested mathematical model of quasihard spheres describes fairly correctly the processes of elastic scattering of atoms in a gas medium and of displaced atoms in a solid with an almost constant rate of static simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshits, Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1976).

    Google Scholar 

  2. V. A. Vol’pyas, E. K. Gol’man, and M. A. Tsukerman, Zh. Tekh. Fiz. 66(4), 16 (1996).

    Google Scholar 

  3. W. D. Wilson, L. G. Haggmark, and J. P. Biersack, Phys. Rev. B 15, 2458 (1977).

    ADS  Google Scholar 

  4. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (New York, 1960).

  5. G. Leibfried and O. S. Oen, J. Appl. Phys. 33, 2257 (1962).

    Article  Google Scholar 

  6. C. Lechmann and M. T. Robinson, Phys. Rev. 134(1A), A37 (1964).

    ADS  Google Scholar 

  7. W. M. MacDonald, Am. J. Phys. 41, 1337 (1973).

    Article  Google Scholar 

  8. M. Born and J. E. Mayer, Z. Phys. 75, 1 (1932).

    ADS  Google Scholar 

  9. A. A. Abrahamson, Phys. Rev. 178, 76 (1969).

    Article  ADS  Google Scholar 

  10. V. I. Gaydaenko and V. K. Nikulin, Chem. Phys. Lett. 7, 360 (1970).

    Article  ADS  Google Scholar 

  11. D. K. Holmes, in Radiation Damage in Solids (IAEA, Vienna, 1962), Vol. 1, p. 3.

    Google Scholar 

  12. R. E. Somekn, Vacuum 34, 987 (1984).

    Google Scholar 

  13. A. G. Zhiglinskii, V. V. Kuchinskii, and E. G. Sheikin, Zh. Tekh. Fiz. 56, 1718 (1986) [Sov. Phys. Tech. Phys. 31, 1022 (1986)].

    Google Scholar 

  14. G. M. Turner, I. S. Falconer, B. W. James, and D. R. McKenzie, J. Appl. Phys. 65, 3671 (1989).

    Article  ADS  Google Scholar 

  15. O. B. Firsov, Zh. Éksp. Teor. Fiz. 33, 696 (1957) [Sov. Phys. JETP 6, 534 (1957)].

    MATH  Google Scholar 

  16. V. K. Nikulin, Zh. Tekh. Fiz. 41, 567 (1971) [Sov. Phys. Tech. Phys. 16, 439 (1971)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 70, No. 3, 2000, pp. 13–18.

Original Russian Text Copyright © 2000 by Vol’pyas, Gol’man.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vol’pyas, V.A., Gol’man, E.K. Quasihard-sphere model in simulation of the processes of particle scattering. Tech. Phys. 45, 298–303 (2000). https://doi.org/10.1134/1.1259619

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259619

Keywords

Navigation