Skip to main content
Log in

Selective infrared multiphoton dissociation of molecules in a pulsed gasdynamic flow of small extent

  • Atoms, Spectra, and Radiation
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The isotopically selective IR multiphoton dissociation of molecules (here CF3I) in a pulsed gasdynamic flow of small extent (the length of the flow in space is Δx fl⩽1 cm) is investigated under conditions such that the entire flow is irradiated by high-intensity IR laser radiation. The use of a flow of small extent permits achieving high dissociation yields of resonantly excited molecules in the entire volume of the flow and thus to obtain a highly enriched residual gas in one radiation cycle. The method described gives a 400-fold enrichment of the residual gas in the isotope 13C when a pulsed molecular flow of CF3I of natural isotopic composition is irradiated by just a single laser pulse. The dissociation yield in this case is practically unity, and the selectivity α⩾10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Anderson, in Gasdynamics, Vol. 4, Marcel Dekker, New York (1974), pp. 1–91.

    Google Scholar 

  2. G. Scoles (ed.), Atomic and Molecular Beam Methods, Oxford University Press, New York-Oxford (1988).

    Google Scholar 

  3. D. H. Levy, L. Wharton, and R. E. Smalley, in Chemical and Biochemical Applications of Lasers, Vol. 11, Academic Press, New York (1977), pp. 1–41.

    Google Scholar 

  4. E. P. Velikhov, V. Yu. Baranov, V. S. Letokhov et al., in Pulsed CO 2 Lasers and Their Application for Isotope Separation [in Russian], Nauka, Moscow (1983), p. 304.

    Google Scholar 

  5. L. V. Gurvich, G. V. Karachentsev, V. N. Kondrat’ev et al., in Breaking Energies of Chemical Bonds. Ionization Potential and Electron Affinity [in Russian], edited by V. N. Kondrat’ev, Nauka, Moscow (1974), p. 351.

    Google Scholar 

  6. M. Drouin, M. Gauthier, R. Pilson, and P. Hackett, Chem. Phys. Lett. 60, 16 (1978).

    Article  ADS  Google Scholar 

  7. M. Gauthier, P. A. Hackett, and C. Willis, Chem. Phys. 45, 39 (1980).

    Article  Google Scholar 

  8. V. N. Bagratashvili, V. S. Doljikov, V. S. Letohov, E. A. Ryabov, Appl. Phys. 20, 231 (1979).

    Article  Google Scholar 

  9. V. N. Bagratashvili, V. S. Dolzhikov, V. S. Letokhov et al., Zh. Éksp. Teor. Fiz. 77, 2238 (1979) [Sov. Phys. JETP 50, 1075 (1979)].

    Google Scholar 

  10. S. Bittenson and P. L. Houston, J. Chem. Phys. 67, 4819 (1977).

    ADS  Google Scholar 

  11. V. M. Apatin and G. N. Makarov, Kvantovaya Élektron. (Moscow) 10, 1435 (1983) [Sov. J. Quantum Electron 13, 932 (1983)].

    Google Scholar 

  12. G. I. Abdushelishvili, O. N. Avotkin, V. N. Bagratashvili et al., Kvantovaya élektron. (Moscow) 9, 743 (1982) [Sov. J. Quantum Electron. 12, 459 (1982)].

    Google Scholar 

  13. W. Fuss, Spectrochim. Acta 38, 829 (1982).

    Google Scholar 

  14. G. I. Dimov, Prib. Tekh. Eksp. No. 5, pp. 168–171 (1968).

  15. W. R. Gentry and C. F. Giese, Rev. Sci. Instrum. 49, 595 (1978).

    Article  ADS  Google Scholar 

  16. V. M. Apatin and G. N. Makarov, Zh. Éksp. Teor. Fiz. 84, 15 (1983) [Sov. Phys. JETP 57, 8 (1983)].

    Google Scholar 

  17. V. M. Apatin, L. M. Dorozhkin, G. N. Makarov, G. M. Pleshkov, Appl. Phys. 29, 273 (1982).

    Google Scholar 

  18. G. N. Makarov, Zh. Éksp. Teor. Fiz. 108, 404 (1995) [JETP 81, 218 (1995)].

    Google Scholar 

  19. D. G. Veiblen, Fluorine and Its Compounds, edited by D. Saimong, IL, Moscow (1956), pp. 431–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 69, 35–41 (January 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, G.N., Malinovskii, D.E. & Ogurok, D.D. Selective infrared multiphoton dissociation of molecules in a pulsed gasdynamic flow of small extent. Tech. Phys. 44, 31–36 (1999). https://doi.org/10.1134/1.1259248

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259248

Keywords

Navigation