Skip to main content
Log in

Vibrational pumping of H2 molecules in a hydrogen stream flowing through a cesium-hydrogen discharge

  • Atoms, Spectra, and Radiation
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The H2 molecular vibrational distribution function that is formed in a flow of molecular hydrogen is calculated. It is assumed that the hydrogen stream flows in a planar channel and passes through two sections in succession. In the first section a cesium-hydrogen discharge and preliminary vibrational pumping of H2 molecules occur. In the second section, where there is no discharge, the v-v exchange process results in a considerable increase in the density of vibrationally excited molecules in a certain upper part of the vibrational spectrum. The possibility of using the vibrational distribution function produced in this manner to generate negative hydrogen ions as a result of subsequent dissociative attachment of electrons to vibrationally excited molecules is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bacal and G. W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979).

    Article  ADS  Google Scholar 

  2. J. R. Hiskes, J. Appl. Phys. 51, 4592 (1980).

    Article  ADS  Google Scholar 

  3. M. Bacal, Phys. Rev. B 37/38, 28 (1989).

    Google Scholar 

  4. D. A. Skinner, A. M. Bruneteau, P. Berlemont, and C. Courteille, Phys. Rev. E 48, 2122 (1993).

    Article  ADS  Google Scholar 

  5. M. Bacal and D. A. Skinner, Comments At. Mol. Phys. 23, 283 (1990).

    Google Scholar 

  6. J. M. Wadehra, Phys. Rev. A 29, 106 (1984).

    ADS  Google Scholar 

  7. F. G. Baksht and V. G. Ivanov, Zh. Tekh. Fiz. 62, 195 (1992) [Sov. Phys. Tech. Phys. 37, 223 (1992)].

    Google Scholar 

  8. F. G. Baksht, L. I. Elizarov, and V. G. Ivanov, Fiz. Plazmy 29, 854 (1990) [Sov. J. Plasma Phys. 29, 497 (1990)].

    Google Scholar 

  9. F. G. Baksht, G. A. Djuzhev, and L. I. Elizarov, Plasma Sources Sci. Technol. 3, 88 (1994).

    Article  ADS  Google Scholar 

  10. F. G. Baksht and V. G. Ivanov, Pis’ma Zh. Tekh. Fiz. 23(1), 26 (1997) [Sov. Tech. Phys. Lett. 23(1), 20 (1997)].

    Google Scholar 

  11. S. Dushman, Scientific Foundations of Vacuum Technique (Wiley, New York, 1962, Mir, Moscow, 1964) 714 pp.

    Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon Press, New York, 1987; Russian original, Nauka, Moscow, 1986).

    Google Scholar 

  13. F. G. Baksht, L. I. Elizarov, V. G. Ivanov, and V. G. Yur’ev, Fiz. Plazmy 14, 91 (1988) [Sov. J. Plasma Phys. 14, 56 (1988)].

    Google Scholar 

  14. F. G. Baksht and V. G. Ivanov, Fiz. Plazmy 12, 286 (1986) [Sov. J. Plasma Phys. 12, 165 (1986)].

    Google Scholar 

  15. F. G. Baksht and V. G. Ivanov, Zh. Tekh. Fiz. 66(9), 58 (1996) [Sov. Phys. Tech. Phys. 41, 890 (1996)].

    Google Scholar 

  16. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1986; Nauka, Moscow, 1974) 711 pp.

    Google Scholar 

  17. F. G. Baksht, G. A. Dyuzhev, A. M. Martsinovskii et al., Thermionic Converters and Low-Temperature Plasma [in Russian], Nauka, Moscow, 1973, 480 pp.

    Google Scholar 

  18. Yu. Z. Ionikh, Opt. Spektrosk. 51, 76 (1981) [Opt. Spectrosc. 51, 39 (1981)].

    Google Scholar 

  19. A. V. Eletskii, L. A. Palkina, and B. M. Smirnov, Transport Phenomena in Weakly Ionized Plasma [in Russian], Atomizdat, Moscow, 1975, 336 pp.

    Google Scholar 

  20. G. Blyth, J. Chem. Soc., Faraday Trans. 1 83, 751 (1987).

    Article  Google Scholar 

  21. P. Madhavan and J. L. Whitten, J. Chem. Phys. 77, 2673 (1982).

    Article  ADS  Google Scholar 

  22. J. Harris and S. Anderson, Phys. Rev. Lett. 55, 1583 (1985).

    ADS  Google Scholar 

  23. M. Cacciatore and G. D. Billing, Surf. Sci. 232, 35 (1990).

    Article  Google Scholar 

  24. C. T. Reitner, D. J. Auerbach, and H. A. Michelsen, Phys. Rev. Lett. 68, 1164 (1992).

    ADS  Google Scholar 

  25. C. Gorse, M. Capitelli, and M. Bacal, Chem. Phys. 117, 172 (1987).

    Article  Google Scholar 

  26. F. G. Baksht, L. I. Elizarov, V. G. Ivanov et al., Pis’ma Zh. Tekh. Fiz. 19(22), 39 (1993) [Sov. Tech. Phys. Lett. 19, 716 (1993)].

    Google Scholar 

  27. F. G. Baksht, V. G. Ivanov, A. G. Nikitin, and S. M. Shkol’nik, Pis’ma Zh. Tekh. Fiz. 20(22), 83 (1994) [Tech. Phys. Lett. 20(11), 927 (1994)].

    Google Scholar 

  28. F. G. Baksht, Zh. Tekh. Fiz. 52, 3 (1982) [Sov. Phys. Tech. Phys. 27, 1 (1982)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 68, 10–19 (October 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baksht, F.G., Ivanov, V.G. Vibrational pumping of H2 molecules in a hydrogen stream flowing through a cesium-hydrogen discharge. Tech. Phys. 43, 1145–1153 (1998). https://doi.org/10.1134/1.1259169

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259169

Keywords

Navigation