Skip to main content
Log in

Charge carrier mobility in n-CdxHg1−x Te crystals subjected to dynamic ultrasonic stressing

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The Hall mobility was studied in the n-CdxHg1−x Te crystals subjected to dynamic ultrasonic stressing (W US≤104 W/m2, f=5–7 MHz). It was found that, in field of the ultrasonic deformation, an increase in the carrier mobility in the impurity conduction region (T<120 K) and a decrease in the intrinsic conduction region (T>120 K) occurred in all tested samples. In this case, the magnitude of the sonic-stimulated variation in μH increases with decreasing structural perfection of a crystal. Different mechanisms of ultrasonic influence on μH with regard to scattering by optical phonons, ionized impurities, and alloy potential are analyzed, with the current flow conditions in the crystal taken into account. It is shown that, in the impurity conduction region, the main cause of the sonic-stimulated increase of the Hall mobility is the smoothing of the macroscopic intracrystalline potential that results from the inhomogeneity of the crystals. In the intrinsic conduction region, a decrease in mobility is caused by an increase in the intensity of scattering by the optical phonons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Myslivets and Ya. M. Olikh, Fiz. Tverd. Tela (Leningrad) 32, 2912 (1990) [Sov. Phys. Solid State 32, 1692 (1990)].

    Google Scholar 

  2. P. I. Baranskii, A. E. Belyaev, S. M. Komirenko, and N. V. Shevchenko, Fiz. Tverd. Tela (Leningrad) 32, 2159 (1990) [Sov. Phys. Solid State 32, 1257 (1990)].

    Google Scholar 

  3. A. V. Lyubchenko and Ya. M. Olikh, Fiz. Tverd. Tela (Leningrad) 37, 2505 (1985) [Sov. Phys. Solid State 27, 1500 (1985)].

    Google Scholar 

  4. O. I. Vlasenko, Ya. M. Olikh, and R. K. Savkina, Ukr. Fiz. Zh. 44, 618 (1999).

    Google Scholar 

  5. A. I. Vlasenko, Ya. M. Olikh, and R. K. Savkina, Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 410 (1999) [Semiconductors 33, 398 (1999)].

    Google Scholar 

  6. A. I. Vlasenko, A. V. Lyubchenko, and E. A. Sal’kov, Ukr. Fiz. Zh. 25, 1318 (1980).

    Google Scholar 

  7. Y. Y. Dubowski, T. Dietl, W. Szymanska, and R. R. Galaska, J. Phys. Chem. Solids 42, 351 (1981).

    Google Scholar 

  8. W. Szymanska and T. Dietl, J. Phys. Chem. Solids 39, 1025 (1978).

    Google Scholar 

  9. A. I. Vlasenko, K. R. Kurbanov, A. V. Lyubchenko, and E. A. Sal’kov, Ukr. Fiz. Zh. 25, 1392 (1980).

    Google Scholar 

  10. S. G. Gasan-zade, Optoélektron. Poluprovodn. Tekh. 33, 91 (1998).

    Google Scholar 

  11. A. I. Vlasenko, V. V. Gorbunov, and A. V. Lyubchenko, Ukr. Fiz. Zh. 29, 423 (1984).

    Google Scholar 

  12. I. R. Gorokhovskii, A. K. Laurinavichyus, Yu. K. Pozhela, et al., Fiz. Tekh. Poluprovodn. (Leningrad) 21, 1998 (1987) [Sov. Phys. Semicond. 21, 1211 (1987)].

    Google Scholar 

  13. P. N. Gorlei and V. A. Shenderovskii, Variational Methods in the Kinetic Theory (Naukova Dumka, Kiev, 1992).

    Google Scholar 

  14. J. Kossut, Phys. Status Solidi B 86, 593 (1978).

    Google Scholar 

  15. D. Chattopadhyay and B. R. Nag, Phys. Rev. B 12, 5676 (1975).

    Article  ADS  Google Scholar 

  16. L. Makowski and M. Glicksman, J. Phys. Chem. Solids 34, 487 (1973).

    Google Scholar 

  17. Y. Y. Dobowski, Phys. Status Solidi B 85, 663 (1978).

    Google Scholar 

  18. K. C. Hass, H. Ehrenreich, and B. Velicky, Phys. Rev. B 27, 1088 (1983).

    Article  ADS  Google Scholar 

  19. P. Moravec, R. Grill, J. Franc, et al., Proc. SPIE 3890, 307 (1999).

    Google Scholar 

  20. F. J. Bartoli, C. A. Hoffman, and J. R. Meyer, J. Vac. Sci. Technol. A 1, 1669 (1983).

    Article  ADS  Google Scholar 

  21. M. A. Kinch, M. J. Brau, and A. Simmons, J. Appl. Phys. 44, 1649 (1973).

    Article  Google Scholar 

  22. M. K. Sheinkman and A. Ya. Shik, Fiz. Tekh. Poluprovodn. (Leningrad) 10, 209 (1976) [Sov. Phys. Semicond. 10, 128 (1976)].

    Google Scholar 

  23. H. Oszwaldowski, J. Phys. Chem. Solids 46, 791 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 34, No. 6, 2000, pp. 670–676.

Original Russian Text Copyright © 2000 by Vlasenko, Olikh, Savkina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlasenko, A.I., Olikh, Y.M. & Savkina, R.K. Charge carrier mobility in n-CdxHg1−x Te crystals subjected to dynamic ultrasonic stressing. Semiconductors 34, 644–649 (2000). https://doi.org/10.1134/1.1188046

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1188046

Keywords

Navigation