Skip to main content
Log in

Holmium redistribution upon solid-phase epitaxial crystallization of amorphized silicon layers

  • Atomic Structure and Nonelectronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Concentration profiles of Ho were investigated after annealing at a temperature of 620°C of silicon layers implanted with 1-MeV Ho+ ions to doses of 1−3×1014 cm−2 exceeding the amorphization threshold, as well as with O+ ions with energies that ensure the coincidence of the concentration maxima of implanted impurities and doses that are greater by an order of magnitude than those of Ho+. The crystallization of the amorphized silicon layer occurs by the mechanism of solid-phase epitaxy. The main features of the segregation redistribution of Ho are shown to be similar to the previously studied segregation behavior of Er. An increase in the Ho concentration at the initial stage of the solid-phase epitaxial crystallization is explained by the small rate of mass transfer through the amorphous layer-single crystal interface. An analytical expression was obtained to describe the variation of the segregation coefficient in the process of solid-phase epitaxial crystallization, including its initial stage, which allows the calculation concentration profiles of rare-earth elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Moutennet, H. L’Haridon, P. N. Favennec, et al., Mater. Sci. Eng., B 4, 75 (1989).

    Google Scholar 

  2. W. P. Gillin, Z. Jingping, and B. J. Sealy, Solid State Commun. 77, 907 (1991).

    Article  Google Scholar 

  3. J. S. Custer, A. Polman, and H. M. Pinxteren, J. Appl. Phys. 75, 2809 (1994).

    Article  ADS  Google Scholar 

  4. O. V. Aleksandrov, Yu. V. Nikolaev, and N. N. Sobolev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 114 (1999) [Phys.-Semicond. 33, 101 (1999)].

    Google Scholar 

  5. O. V. Aleksandrov, Yu. V. Nikolaev, and N. N. Sobolev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 1420 (1998) [Phys.-Semicond. 32, 1266 (1998)].

    Google Scholar 

  6. O. V. Aleksandrov, Yu. V. Nikolaev, N. N. Sobolev, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 652 (1999) [Phys.-Semicond. 33, 606 (1999)].

    Google Scholar 

  7. E. F. Kennedy, L. Csepregi, and J. M. Mayer, J. Appl. Phys. 48, 4241 (1977).

    Article  ADS  Google Scholar 

  8. D. A. Antoniadis, M. Rodoni, and R. W. Dutton, J. Electrochem. Soc. 126, 1939 (1979).

    Google Scholar 

  9. V. I. Kol’dyaev, V. A. Moroz, and S. A. Nazarov, Avtometriya, No. 3, 46 (1988).

  10. O. V. Aleksandrov and N. N. Afonin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 19 (1998) [Phys.-Semicond. 32, 15 (1998)].

    Google Scholar 

  11. S. Roorda, J. S. Custer, W. C. Sinke, et al., Nucl. Instr. Methods Phys. Res., Sect B 59/60, 344 (1991).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 34, No. 1, 2000, pp. 3–7.

Original Russian Text Copyright © 2000 by Aleksandrov, Nikolaev, Sobolev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, O.V., Nikolaev, Y.A. & Sobolev, N.A. Holmium redistribution upon solid-phase epitaxial crystallization of amorphized silicon layers. Semiconductors 34, 1–5 (2000). https://doi.org/10.1134/1.1187941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187941

Keywords

Navigation