, Volume 33, Issue 11, pp 1225–1228 | Cite as

Absorption of a strong electromagnetic wave by electrons in a superlattice in a quantizing electric field

  • D. V. Zav’yalov
  • S. V. Kryuchkov
Low-Dimensional Systems


Intraminiband absorption of light by electrons in a quantum superlattice in a quantizing electric field is investigated theoretically taking into account the electron-phonon interaction. It is assumed that the interaction with optical dispersion-free phonons makes the main contribution to electron scattering. It is shown that the point ω=ω0 (ω is the light frequency, and ω0 is the optical phonon frequency) conditionally divides the ω dependence of the absorption into two parts: ω<ω0, the region of exponentially weak absorption and ω>ω0, the region of “strong” absorption. An electric field shifts the region of strong absorption in the red direction of the spectrum.


Magnetic Material Electromagnetic Wave Electromagnetism Strong Absorption Optical Phonon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Solymar and D. Walsh, Lectures on the Electrical Properties of Materials [Oxford University Press, New York, 1988; Mir, Moscow, 1991].Google Scholar
  2. 2.
    T. K. Woodward, Teodor Sizer (II), D. L. Sivco, and A. Y. Cho, Appl. Phys. Lett. 57(6), 548 (1990).CrossRefADSGoogle Scholar
  3. 3.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, and A. C. Gossard et al., Appl. Phys. Lett. 45(1), 13 (1984).CrossRefADSGoogle Scholar
  4. 4.
    Y. Silberberg, P. W. Smith, D. J. Eilenberger, and D. A. B. Miller et al., Opt. Lett. 9, 507 (1984).ADSGoogle Scholar
  5. 5.
    K. Fujiwara, H. Shneider, R. Cingolani, and K. Ploog, Solid State Commun. 72(9), 935 (1989).CrossRefGoogle Scholar
  6. 6.
    A. G. Zhilich, Fiz. Tverd. Tela (Leningrad) 34(11) 3501 (1992) [Sov. Phys. Solid State 34, 1875 (1992)].Google Scholar
  7. 7.
    V. L. Malevich, JETP Lett. 57, 175 (1993).ADSGoogle Scholar
  8. 8.
    M. Saitoh, J. Phys. C: Sol. St. Phys. 5(9), 914 (1972).ADSGoogle Scholar
  9. 9.
    K. Hacker, Phys. Status Solidi 33(2), 607 (1969).ADSGoogle Scholar
  10. 10.
    V. A. Pazdzerskii, Fiz. Tekh. Poluprovodn. 6(4), 758 (1972) [Sov. Phys. Semicond. 6, 658 (1972)].Google Scholar
  11. 11.
    I. N. Bronshtein and K. A. Semendyaev, Handbook of Mathematics (Nauka, Moscow, 1980).Google Scholar
  12. 12.
    I. B. Levinson and Ya. Yasevichyute, Zh. Éksp. Teor. Fiz. 62(5), 1902 (1972) [Sov. Phys. JETP 35, 991 (1972)].Google Scholar
  13. 13.
    V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1970).Google Scholar
  14. 14.
    É. M. Épshtein, JETP Lett. 13, 364 (1971).ADSGoogle Scholar
  15. 15.
    K. Seeger, Semiconductor Physics [Springer-Verlag, Berlin, 1974; Mir, Moscow, 1977].Google Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • D. V. Zav’yalov
    • 1
  • S. V. Kryuchkov
    • 1
  1. 1.Volgograd State Pedagogical UniversityVolgogradRussia

Personalised recommendations