Skip to main content
Log in

Modeling Si nanoprecipitate formation in SiO2 layers with excess Si atoms

  • Atomic Structure and Non-electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Computer simulations based on the Monte Carlo method are used to analyze processes leading to the formation of luminescence centers in SiO2 implanted with Si ions. The simulations, which take place in a two-dimensional space, mimic the growth of silicon nanoprecipitates in layers containing several at.% of excess silicon. It is assumed that percolation clusters made up of neighboring Si atoms form first. As the annealing temperature increases, these clusters grow and compactify into nano-sized inclusions of a well-defined phase. It is shown that a dose dependence arises from an abrupt enhancement of the probability of forming direct Si-Si bonds when the concentration of silicon exceeds ∼1 at. %. Under these conditions, percolation chains and clusters form even before annealing begins. The effect of the temperature of subsequent anneals up to 900 °C is modeled via the well-known temperature dependence of Si diffusion in SiO2. It is assumed that annealing at moderate temperatures increases the mobility of Si atoms, thereby facilitating percolation and development of clusters due to an increase in the interaction radius. Intrinsic diffusion processes that occur at high temperatures transform branching clusters into nanoprecipitates with well-defined phase boundaries. The dose and temperature intervals for the formation of precipitates obtained from these simulations are in agreement with the experimental intervals of dose and temperatures corresponding to the appearance of and changes in luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Atwater, K. V. Shcheglov, S. S. Wong, K. J. Vahala, R. S. Flagan, M. I. Brongersma, and A. Polman, Mater. Res. Soc. Symp. Proc. 321, 363 (1994).

    Google Scholar 

  2. T. Shimizu-Iwayama, S. Nakao, and K. Saitoh, Appl. Phys. Lett. 65, 1814 (1994).

    Article  ADS  Google Scholar 

  3. P. Mutti, G. Ghislotti, S. Bertoni, J. Bonoldi, G. F. Cerofolini, J. Meda, E. Grilli, and M. Guzzi, Appl. Phys. Lett. 66, 851 (1995).

    Article  ADS  Google Scholar 

  4. T. Shimizu-Iwayama, Y. Terao, A. Kamiya, M. Takeda, S. Nakao, and K. Saitoh, Nucl. Instrum. Methods Phys. Res. B 112, 214 (1996).

    Article  ADS  Google Scholar 

  5. G. A. Kachurin, I. E. Tyschenko, K. S. Zhuravlev, N. A. Pazdnikov, V. A. Volodin, A. K. Gutakovsky, A. F. Leier, W. Skorupa, and R. A. Yankov, Nucl. Instrum. Methods Phys. Res. B 112, 571 (1997).

    Google Scholar 

  6. G. A. Kachurin, K. S. Zhuravlev, N. A. Pazdnikov, A. F. Leier, I. E. Tyschenko, V. A. Volodin, W. Skorupa, and R. A. Yankov, Nucl. Instrum. Methods Phys. Res. B 127/128, 583 (1997).

    Article  ADS  Google Scholar 

  7. W. Skorupa, R. A. Yankov, I. E. Tyschenko, H. Frob, T. Bohme, and K. Leo, Appl. Phys. Lett. 68, 2410 (1996).

    Article  ADS  Google Scholar 

  8. W. Skorupa, R. A. Yankov, L. Rebohle, H. Frob, T. Bohme, K. Leo, I. E. Tyschenko, and G. A. Kachurin, Nucl. Instrum. Methods Phys. Res. B 119, 106 (1996).

    ADS  Google Scholar 

  9. G. A. Kachurin, I. E. Tyschenko, W. Skorupa, R. A. Yankov, K. S. Zhuravlev, N. A. Pazdnikov, V. A. Volodin, A. K. Gutakovskii, and A. F. Leier, Fiz. Tekh. Poluprovodn. 31, 730 (1997) [Semiconductors 31, 626 (1997)].

    Google Scholar 

  10. I. E. Tyschenko, G. A. Kachurin, K. S. Zhuravlev, N. A. Pazdnikov, V. A. Volodin, A. K. Gutakovsky, A. F. Leier, H. Frob, K. Leo, T. Bohme, L. Rebohle, R. A. Yankov, and W. Skorupa, Mater. Res. Soc. Symp. Proceedings 438, 453 (1997).

    Google Scholar 

  11. G. Ghislotti, B. Nielsen, P. Asoka-Kumar, K. G. Lynn, A. Gumbhir, L. F. Di Mauro, and C. E. Bottani, J. Appl. Phys. 79, 8660 (1996).

    Article  ADS  Google Scholar 

  12. L.-S. Liao, X.-M. Bao, N.-S. Li, X.-Q. Zheng, and N.-B. Min, J. Lumin. 68, 199 (1996).

    Google Scholar 

  13. G. A. Kachurin, L. Rebohle, I. Skorupa, R. A. Yankov, I. E. Tyschenko, H. Frob, T. Bohme, and L. Leo, Fiz. Tekh. Poluprovodn. 32, 439 (1998) [Semiconductors 32, 395 (1998)].

    Google Scholar 

  14. L. A. Nesbit, Appl. Phys. Lett. 46, 38 (1985).

    Article  ADS  Google Scholar 

  15. J. Maeda, Phys. Rev. B 51, 1658 (1995).

    ADS  Google Scholar 

  16. A. Hartstein, J. C. Tsang, D. J. Di Maria, and D. W. Dong, Appl. Phys. Lett. 36, 836 (1980).

    Article  ADS  Google Scholar 

  17. F. S. Ham, J. Appl. Phys. 30, 1518 (1959).

    Google Scholar 

  18. I. M. Lifshits and V. V. Slezov, Zh.Éksp. Teor. Fiz. 35, 479 (1958) [Sov. Phys. JETP 8, 331 (1958)].

    Google Scholar 

  19. A. B. Pevtsov, V. Ju. Davydov, N. A. Feoktistov, and V. G. Karpov, Phys. Rev. B 52, 955 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 33, 389–394 (April 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leier, A.F., Safronov, L.N. & Kachurin, G.A. Modeling Si nanoprecipitate formation in SiO2 layers with excess Si atoms. Semiconductors 33, 380–384 (1999). https://doi.org/10.1134/1.1187698

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187698

Keywords

Navigation