Skip to main content
Log in

Model of the redistribution of erbium during the solid-phase epitaxial crystallization of silicon

  • Atomic Structure and Non-Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A quantitative model of the redistribution of rare-earth-ion impurities during the solid-phase epitaxial crystallization of Si layers amorphized by implantation is developed. The parameters of the model include the segregation coefficient k and the width of the transition layer. The movement of the crystallization front toward the surface is accompanied by an increase in the segregation coefficient at a rate which can be characterized by the ratio of the thickness of the recrystallization layer to the width of the transition layer. The increase in k is attributed to defect accumulation in the transition layer. In the case of a thin Er-containing amorphous layer, the segregation coefficient does not reach k=1, because the impurity is driven back toward the surface. In the case of a thicker Er-containing layer, the segregation coefficient exceeds k=1 and prevents the accumulation of impurity atoms near the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Sobolev, Fiz. Tekh. Poluprovodn. 29, 1153 (1995) [Semiconductors 29, 595 (1995)].

    Google Scholar 

  2. A. F. Vyatkin, Poverkhnost’ No. 4, 5 (1991).

  3. G. L. Olson and J. A. Roth, in Handbook of Crystal Growth, Vol. 3: Thin Films and Epitaxy, edited by D. T. J. Hurle (Elsevier, Amsterdam-New York, 1994), p. 257.

    Google Scholar 

  4. J. S. Custer, A. Polman, and H. M. van Pinxteren, J. Appl. Phys. 75, 2809 (1994).

    Article  ADS  Google Scholar 

  5. A. Polman, J. S. Custer, P. M. Zagwijn, A. M. Molenbroek, and P. F. A. Alkemade, J. Appl. Phys. 81, 150 (1997).

    Article  ADS  Google Scholar 

  6. A. Polman, J. S. Custer, E. Snoeks, and G. N. van den Hoven, Appl. Phys. Lett. 62, 507 (1993).

    Article  ADS  Google Scholar 

  7. D. Moutonnet, H. L’Haridon, P. N. Favennec, M. Salvi, and M. Gauneau, Mater. Sci. Eng., B 4, 75 (1989).

    Article  Google Scholar 

  8. W. P. Gillin, Zhang Jingping, and B. J. Sealy, Solid State Commun. 77, 907 (1991).

    Article  Google Scholar 

  9. N. A. Sobolev, A. M. Emel’yanov, Yu. A. Kudryavtsev, R. N. Kyutt, M. I. Makovijchuk, Yu. A. Nikolaev, E. O. Parshin, V. I. Sakharov, I. T. Serenkov, E. I. Shek, and K. F. Shtel’makh, Solid State Phenom. 57–58, 213 (1997).

    Google Scholar 

  10. W. R. Runyan, Silicon Semiconductor Technology (McGraw-Hill, New York, 1965; Metallurgiya, Moscow, 1969).

    Google Scholar 

  11. Yu. M. Tairov and V. F. Tsvetkov, Technology of Semiconductor and Insulating Materials [in Russian], Vysshaya Shkola, Moscow (1990).

    Google Scholar 

  12. A. F. Burenkov, F. F. Komarov, M. A. Kumakhov, and M. M. Temkin, Spatial Distributions of Energy Released in Atomic Collision Cascades in Solids [in Russian], Énergoatomizdat, Moscow (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 32, 1420–1423 (December 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, O.V., Nikolaev, Y.A. & Sobolev, N.A. Model of the redistribution of erbium during the solid-phase epitaxial crystallization of silicon. Semiconductors 32, 1266–1269 (1998). https://doi.org/10.1134/1.1187612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187612

Keywords

Navigation