Skip to main content
Log in

Self-compensation in CdTe〈Cl〉 in the presence of phase equilibrium of the system crystal-cadmium (tellurium) vapor

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The self-compensation of charged point defects in CdTe〈Cl〉 is investigated down to the lower limit of free-carrier densities (n i ,p i ) over the entire range of vapor pressures P Cd and P Te in equilibrium of the crystal-gas phases during annealing. Under conditions where P Te2 is controlled during annealing of the crystal, the electron density n is observed to increase from 107 cm−3 to 1014 cm−3 as P Te increases from P min to CdTe〈Te〉 saturation. This result is attributed to the formation of a TeCd antistructural defect. The appearance of TeCd in the crystal lowers the concentration of cadmium vacancies to the point that the mechanism of exact self-compensation of CdTe〈Cl〉 is disrupted, and low-resistivity n-type crystals are obtained. The data obtained on the concentration p(n) as a function of P Te2 is used to plot the total n-n i -p i dependence with the variation of P Cd-P Te2, reflecting the state of point defects in CdTe〈Te〉. The procedure for annealing crystals in two-phase crystal-gas equilibrium is used to reversibly induce n i -p i inversion of the electrical conductivity of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Kröger and J. Vink, Phys. Status Solidi 3, 310 (1956).

    Google Scholar 

  2. G. Mandel, Phys. Rev. A 134, 1073 (1964).

    ADS  MathSciNet  Google Scholar 

  3. F. A. Kröger, The Chemistry of Imperfect Crystals (North-Holland, Amsterdam; Wiley, New York, 1964).

  4. O. A. Matveev and A. I. Terent’ev, Fiz. Tekh. Poluprovodn. 27, 1894 (1993) [Semiconductors 27, 1043 (1993)].

    Google Scholar 

  5. R. O. Bell, F. V. Wald, C. Canaly, F. Nava, and G. Ottaviani, IEEE Trans. Nucl. Sci. NS-21, 331 (1974).

    Google Scholar 

  6. O. A. Matveev, E. N. Arkad’eva, and L. N. Goncharov, Dokl. Akad. Nauk SSSR 221, 325 (1975) [Sov. Phys. Dokl. 20, 147 (1975)].

    Google Scholar 

  7. E. N. Arkadyeva and O. A. Matveev, Rev. Phys. Appl. 12, 239 (1977).

    Google Scholar 

  8. M. A. Berding, M. Van Schilfgaarde, A. T. Paxton, and A. Sher, J. Vac. Sci. Technol. A 8, 1103 (1990).

    Article  ADS  Google Scholar 

  9. J. A. Van Vechten, J. Electrochem. Soc. 122, 423 (1975).

    Google Scholar 

  10. V. N. Martynov and S. P. Kobeleva, Kristallografiya 28, 394 (1983) [Sov. Phys. Crystallogr. 28, 232 (1983)].

    Google Scholar 

  11. D. Nobel, Philips Res. Rep. 14, 361 (1959).

    Google Scholar 

  12. S. S. Chern and F. A. Kröger, J. Solid State Chem. 14, 44 (1975).

    Article  Google Scholar 

  13. J. T. Schick and C. G. Morgan-Pond, J. Vac. Sci. Technol. A 8, 1108 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 32, 159–163 (February 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveev, O.A., Terent’ev, A.I. Self-compensation in CdTe〈Cl〉 in the presence of phase equilibrium of the system crystal-cadmium (tellurium) vapor. Semiconductors 32, 144–147 (1998). https://doi.org/10.1134/1.1187335

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187335

Keywords

Navigation