Skip to main content
Log in

The effect of a “Coulomb well” on the absorption and magnetoabsorption spectra of strained InGaAs/GaAs heterostructures

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The optical and magnetooptical properties of strained InGaAs/GaAs quantum-well heterostructures grown by molecular-beam epitaxy were studied at T=1.7 K in magnetic fields B⩽7.5 T. The well-resolved oscillatory structure of the magnetoabsorption spectra makes it possible to reproduce the “fan diagrams” for transitions between Landau levels of the HH1E1 quantum-confined states, taking into account exciton binding energies calculated variationally. Based on these results, reduced cyclotron masses of carriers were calculated for quantum wells with various indium contents. A self-consistent variational solution to the exciton problem in the structure under study shows that for weak type-II potentials the effect of Coulomb localization of the hole leads to a relative increase in the oscillator strength of the LH1E1 exciton transition. In this case the LH1E1 and LH3E1 exciton transitions remain spatially direct and retain a considerable intensity. The calculated splitting of ∼9 meV between these two states in zero magnetic field is found to be in agreement with experiment. The significant oscillator strength of light-hole excitons, along with the observed doublet structure, are experimental confirmations that electron-hole attraction can transform a rather low barrier for light holes in a type-II structure into a quantum well with a parabolic “Coulomb” shape near its bottom, i.e., a “Coulomb well.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Reithmaier, R. Hoger, H. Riechert, A. Heberle, G. Abstreiter, and G. Weimann, Appl. Phys. Lett. 56, 536 (1990).

    Article  ADS  Google Scholar 

  2. X. M. Fang, X. C. Shen, H. Q. Hou, W. Feng, J. M. Zhou, and F. Koch, Surf. Sci. 228, 351 (1990).

    Article  Google Scholar 

  3. Y. S. Huang, H. Qiang, F. H. Pollak, G. D. Pettit, P. D. Kirchner, J. M. Woodall, H. Stiagier, and L. B. Sorensen, J. Appl. Phys. 70, 7537 (1991).

    ADS  Google Scholar 

  4. A. V. Kavokin, A. I. Nesvizhskii, and R. P. Seisyan, Fiz. Tekh. Poluprovodn. 27, 977 (1993) [Semiconductors 27, 530 (1993)].

    Google Scholar 

  5. Al. L. Efros, Fiz. Tekh. Poluprovodn. 20, 1281 (1986) [Sov. Phys. Semicond. 20, 808 (1986)].

    Google Scholar 

  6. Landolt-Bornstein (Springer-Verlag, Berlin, 1987) V. 22, III, 22a.

  7. M. P. C. M. Krijn, Semicond. Sci. Technol. 6, 27 (1991).

    Article  ADS  Google Scholar 

  8. D. J. Arent, K. Deneffe, C. van Hoof, G. de Boeck, and G. Bords, J. Appl. Phys. 66, 1739 (1989).

    Article  ADS  Google Scholar 

  9. R. P. Seisyan, Spectroscopy of Diamagnetic Excitons [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  10. R. P. Seisyan, A. V. Kavokin, S. I. Kokhanovskii, A. I. Nesvizhskii, M. E. Sasin, M. A. Sinitzin, and B. S. Yavich, Semicond. Sci. Technol. 10, 611 (1995).

    Article  ADS  Google Scholar 

  11. L. D. Landau and I. M. Lifshits, Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, Oxford, 1977) [Russian original, Nauka, Moscow, 1974].

    Google Scholar 

  12. A. V. Kavokin and A. I. Nesvizhskii, Phys. Rev. B 49, 17055 (1994).

    Google Scholar 

  13. G. Peter, E. Delepotre, G. Bastard, J. M. Berroir, C. Delalande, B. Gil, J. M. Hong, and L. L. Chang, J. Luminesc. 52, 147 (1992).

    Article  Google Scholar 

  14. G. Peter, E. Delepotre, G. Bastard, J. M. Berroir, C. Delalande, B. Gil, J. M. Hong, and L. L. Chang, Phys. Rev. B 42, 5891 (1990).

    ADS  Google Scholar 

  15. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures. Symmetry and Optical Phenomena. Springer Ser. Sol. St. Sci. (Springer-Verlag, 1995), v. 110.

  16. N. D. Il’inskii, S. I. Kokhanovskii, and R. P. Seisyan, Fiz. Tekh. Poluprovodn. 27, 108 (1993) [Semiconductors 27, 57 (1993)].

    Google Scholar 

  17. S. I. Kokhanovskii, Yu. M. Makushenko, R. P. Seisyan, Al. L. Efros, T. V. Yazeva, and M. A. Abdullaev, Fiz. Tekh. Poluprovodn. 25, 493 (1991) [Sov. Phys. Semicond. 25, 298 (1991)].

    Google Scholar 

  18. R. P. Seisyan, A. V. Kavokin, S. I. Kokhanovskii, A. I. Nesvizhskii, M. E. Sasin, M. A. Sinitzin, and B. S. Yavich, Semicond. Sci. Technol. 10, 611 (1995).

    Article  ADS  Google Scholar 

  19. F. S. Zhang, H. Luo, N. Dai, N. Samarth, M. Dobrowolska, and J. K. Furdyna, Phys. Rev. B 47, 3806 (1993).

    ADS  Google Scholar 

  20. R. P. Seisyan, M. E. Sasin, S. I. Kokhanovskii, M. R. Vladimirova, A. V. Kavokin, M. A. Kaliteevskii, and V. M. Ustinov, in Proceedings of the 23rd International Conference on the Physics of Semiconductors (Berlin, 1996).

  21. A. Ribayrol, D. Coquillat, A. V. Kavokin, J. P. Lascaray, H. P. Zhou, C. M. Sotomayor-Torres, B. Lunn, and D. E. Ashenford, in Proceedings of the 3rd International Conference on Optics of Excitons in Confined Systems (Montpellier, France, 1993).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 31, 1109–1120 (September 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavokin, A.V., Kokhanovskii, S.I., Nesvizhkii, A.I. et al. The effect of a “Coulomb well” on the absorption and magnetoabsorption spectra of strained InGaAs/GaAs heterostructures. Semiconductors 31, 950–960 (1997). https://doi.org/10.1134/1.1187141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187141

Keywords

Navigation