Skip to main content
Log in

Transport of hydrogen in films of graphite, amorphous silicon, and nickel oxide

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A new concentration pulse method is used to study the transport of hydrogen in three semiconducting materials deposited in the form of films on nickel substrates. The most probable models for the transport are proposed. In graphite hydrogen diffuses in the form of molecules and its diffusion is accompanied by reversible capture; transport occurs along microscopic voids between scales of graphite. Valence unsaturated bonds at the boundaries of the scales serve as capture centers. Diffusion in amorphous silicon is also accompanied by capture, but takes place in an atomic form along interstices; valence unsaturated Si-bonds serve as capture centers. In nickel oxide, as in graphite, diffusive transport takes place in the form of molecules, but capture of hydrogen on valence unsaturated bonds has not been observed. A comparative analysis is made of the properties manifested by these materials for oxygen in order to establish their correlation with the structure and electronic properties of the semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Waelbroeck, Influence of bulk and surface phenomena on the hydrogen permeation through metals, Jülich (1984).

  2. I. E. Gabis, T. N. Kompaniets, and A. A. Kurdyumov, in Interaction of Hydrogen with Metals [in Russian], A. P. Zakharov, ed., Moscow (1987), p. 177.

  3. I. E. Gabis and A. V. Ermakov, FKhMM, No. 4, 64 (1989).

  4. I. E. Gabis, Author’s Abstract of Doctoral Dissertation, St. Petersburg (1995).

  5. I. E. Gabis, A. A. Kurdyumov, N. A. Tikhonov, and A. V. Samsonov, Pis’ma Zh. Tekh. Fiz. 20(4), 88 (1994) [Tech. Phys. Lett. 20, 300 (1994)].

    Google Scholar 

  6. I. E. Gabis, A. A. Kurdyumov, and A. A. Samsonov, Pis’ma Zh. Tekh. Fiz. 21(5), 1 (1995) [Tech. Phys. Lett. 21, 315 (1995)].

    Google Scholar 

  7. I. E. Gabis T. N. Kompaniets, V. A. Kurakin, A. A. Kurdyumov, and V. A. Piven’, FKhMM, No. 4, 18 (1991).

  8. I. E. Gabis, A. A. Kurdyumov, and N. A. Tikhonov, Vestn. SPbGU, ser. 4, vyp. 2, N. 11, 77 (1993).

  9. I. E. Gabis, A. A. Kurdyumov, and N. A. Tikhonov, Vestn. SPbGU, ser. 4, vyp. 3, N. 18, 93 (1993).

  10. E. Fromm and E. Gebhard, Gases and Carbon in Metals [Russian translation], Moscow (1980).

  11. A. M. Danishevskii, V. Latinis, O. I. Kon’kov, E. I. Terukov, and M. M. Mezdrogina, Semiconductors 27, 495 (1993).

    ADS  Google Scholar 

  12. J. P. Chen and R. N. Yang, Surf. Sci. 216, 481 (1989).

    Article  Google Scholar 

  13. E. M. Baitinger, Electronic Structure of Condensed Carbon [in Russian], Sverdlovsk (1988).

  14. K. Morita, K. Chisuka, and Y. Hasebe, J. Nucl. Mater. 162–164, 990 (1989).

    Google Scholar 

  15. M. J. Saeki, Nucl. Mater. 131, 32 (1985).

    Article  Google Scholar 

  16. E. A. Denisov, T. N. Kompaniets et al., J. Nucl. Mater. 212–215, 1448 (1994).

    Google Scholar 

  17. J. W. Corbett, D. Peak et al., A. S. I. NATO, ser. B 136, 61 (1986).

    Google Scholar 

  18. A. Capizzi and A. Mitiga, Appl. Phys. Lett. 5, 918 (1987).

    ADS  Google Scholar 

  19. M. Aucoutrier and J. Chevalier, Ann. Chim. Fr. 14, 117 (1989).

    Google Scholar 

  20. G. J. Clark, C. W. Wite, D. D. Allred, B. R. Appleton, C. W. Magee, and D. E. Carlson, Appl. Phys. Lett. 31, 582 (1977).

    Article  ADS  Google Scholar 

  21. V. P. Zhdanov, Ya. Pavlichek, and É. Knor, Poverkhnost’, No. 10, 41 (1986).

  22. V. N. Ageev, O. P. Burmistrova, N. D. Potekhina, and S. M. Solov’ev, in Interaction of Hydrogen with Metals [in Russian], A. P. Zakharov, Ed., Moscow (1987), p. 18.

  23. N. Mott and E. Davis, Electronic Processes in Noncrystalline Materials, Oxford (1982).

  24. V. S. Vavilov, V. F. Kiselev, and B. N. Mukashev, Defects in Silicon and on its Surface [in Russian], Moscow (1990).

  25. M. Brodsky, Ed., Amorphous Semiconductors, Springer Verlag, N. Y. (1982).

    Google Scholar 

  26. H. Atsumi, S. Tokura, and M. Miyake, J. Nucl. Mater. 155–157, 241 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 31, 209–215 (February 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabis, I.E. Transport of hydrogen in films of graphite, amorphous silicon, and nickel oxide. Semiconductors 31, 110–114 (1997). https://doi.org/10.1134/1.1187091

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187091

Keywords

Navigation