Skip to main content
Log in

Thermodynamics of 3He solid monolayers in the Heisenberg model

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The two-dimensional Heisenberg model is applied to the interpretation of the experimental data on the thermodynamic and magnetic properties of 3He monoatomic films in the millikelvin temperature range, i.e., under conditions when these properties are completely governed by the dynamics of the nuclear spin subsystem. The theoretical results obtained make it possible to describe the internal energy E, the heat capacity C s, and the magnetic susceptibility χ of the two-dimensional spin-1/2 Heisenberg ferromagnets and antiferromagnets on a triangular lattice within the unified approach over the entire range of temperatures. The data available in the literature on the heat capacity and magnetic susceptibility of 3He films are interpreted in the framework of the advanced theory. Most attention is concentrated on the layers characterized by the ferromagnetic exchange. Comparative analysis of theoretical and experimental data is carried out with the use of two fitting parameters: the exchange interaction constant J and the number of “active” spins n 2 in the layer that is determined from the entropy of the system in the limit T → ∞. It is demonstrated that, for the ferromagnetic layers, the theoretical results obtained within the Heisenberg model are in very good agreement with the experimental data reported by different authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Siqueira, J. Niéki, B. Cowan, et al., Phys. Rev. Lett. 76, 1884 (1996).

    Article  ADS  Google Scholar 

  2. M. Siqueira, J. Niéki, B. Cowan, et al., Phys. Rev. Lett. 78, 2600 (1997).

    Article  ADS  Google Scholar 

  3. D. S. Greywall, Phys. Rev. B: Condens. Matter 41, 1842 (1990).

    ADS  Google Scholar 

  4. M. Morishita, K. Ishida, K. Yawata, et al., Czech. J. Phys., Suppl. S1 46, 409 (1991).

    Google Scholar 

  5. K. Ishida, M. Morishita, K. Yawata, et al., Phys. Rev. Lett. 79, 3451 (1997).

    ADS  Google Scholar 

  6. O. E. Vilches, R. S. Ramos, Jr., and D. A. Ritter, Czech. J. Phys., Suppl. S1 46, 397 (1991).

    Google Scholar 

  7. C. Bäuerle, Yu. M. Bunkov, S. N. Fisher, et al., Czech. J. Phys. 46(Suppl.), S1399 (1991).

    Google Scholar 

  8. C. Bäuerle, J. Bossy, Yu. M. Bunkov, et al., J. Low Temp. Phys. 110, 345 (1998).

    Google Scholar 

  9. M. Roger, C. Bäuerle, Yu. M. Bunkov, et al., Phys. Rev. Lett. 80, 1308 (1998).

    Article  ADS  Google Scholar 

  10. A. Abragam and M. Goldman, Nuclear Magnetism: Order and Disorder (Clarendon, Oxford, 1982; Mir, Moscow, 1984).

    Google Scholar 

  11. M. C. Cross and D. S. Fisher, Rev. Mod. Phys. 57, 881 (1985).

    Article  ADS  Google Scholar 

  12. N. Eltner, R. Singh, and A. P. Yang, Phys. Rev. Lett. 71, 1629 (1993).

    ADS  Google Scholar 

  13. M. Roger, Phys. Rev. B: Condens. Matter 56, R2928 (1997).

    ADS  Google Scholar 

  14. E. V. L. de Mello and M. A. Continentino, J. Phys.: Condens. Matter 2, 4161 (1990).

    Article  ADS  Google Scholar 

  15. E. V. L. de Mello and H. Gogfrin, J. Low Temp. Phys. 108, 407 (1997).

    Google Scholar 

  16. T. N. Antsygina, Fiz. Nizk. Temp. (Kiev) 25, 533 (1999).

    Google Scholar 

  17. V. Elser, Phys. Rev. Lett. 62, 2405 (1989).

    Article  ADS  Google Scholar 

  18. P. Schiffer, M. T. O’Keefe, D. D. Osheroff, et al., J. Low Temp. Phys. 94, 498 (1994).

    Article  Google Scholar 

  19. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Nauka, Moscow, 1971).

    Google Scholar 

  20. J. Kondo and K. Yamaji, Prog. Theor. Phys. 47, 807 (1972).

    ADS  Google Scholar 

  21. T. N. Antsygina and V. A. Slyusarev, Fiz. Nizk. Temp. (Kiev) 19, 67 (1993).

    Google Scholar 

  22. T. N. Antsygina and V. A. Slyusarev, Fiz. Nizk. Temp. (Kiev) 21, 127 (1995).

    ADS  Google Scholar 

  23. H. Mermin and N. D. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

    ADS  Google Scholar 

  24. G. S. Rushbrooke, G. A. Baker, Jr., and P. J. Wood, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and M. S. Green (Academic, London, 1974), Vol. 3, Chap. 5.

    Google Scholar 

  25. K. Yamaji and J. Kondo, Phys. Lett. 45, 317 (1973).

    Google Scholar 

  26. D. S. Greywall and P. A. Busch, Phys. Rev. Lett. 65, 2788 (1990).

    ADS  Google Scholar 

  27. M. Morishita, H. Nagani, and H. Fukuyama, J. Low Temp. Phys. 113, 271 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 42, No. 1, 2000, pp. 100–108.

Original Russian Text Copyright © 2000 by Antsygina, Chishko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antsygina, T.N., Chishko, K.A. Thermodynamics of 3He solid monolayers in the Heisenberg model. Phys. Solid State 42, 103–111 (2000). https://doi.org/10.1134/1.1131175

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1131175

Keywords

Navigation