Skip to main content
Log in

An analysis of the mechanism of Kerr effect enhancement in Mn/Dy/Bi

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A study is reported of the structural, magnetic, and magneto-optic properties of Mn/Dy/Bi films obtained by multilayer technology. The maximum Kerr rotation angle in such films is shown to be θ k =2.25°. Possible reasons for such a large Kerr effect enhancement are considered, namely, an increase in the 6p–3d transition probability caused by symmetry distortion, polarization of the Bi6p band, and a change in the density of states near the Fermi level. The latter reason has been analyzed by simulating the electronic structure of Mn/Dy/Bi through superposition of Dy levels on the MnBi band structure. This approach has revealed possible additional transitions which may be induced by the presence of a Dy buffer and could contribute to the Kerr magneto-optic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Williams, R. C. Sherwood, F. G. Foster, and E. M. Kelley, J. Appl. Phys. 28, 1181 (1957).

    Google Scholar 

  2. K. Egashira and T. Yamada, J. Appl. Phys. 45, 3643 (1974).

    Article  Google Scholar 

  3. L. V. Burkova, A. S. Parshin, V. A. Seredkin, and V. Yu. Yakovchuk, Avtometriya No. 2, 39 (1995).

  4. W. K. Unger, E. Wolfgang, H. Harms, and H. Haudek, J. Appl. Phys. 43, 2875 (1972).

    Article  Google Scholar 

  5. H. Göbel, E. Wolfgang, and H. Harms, Phys. Status Solidi A 35, 89 (1976).

    Google Scholar 

  6. Y. J. Wang, J. X. Shen, and Q. Tang, J. Magn. Magn. Mater. 74, 365 (1988).

    Article  ADS  Google Scholar 

  7. A. Katsui, A. Shibukawa, H. Terui, and K. Egashira, J. Appl. Phys. 47, 5069 (1976).

    ADS  Google Scholar 

  8. Y. Chen, C. P. Luo, Z. T. Guan, Q. Y. Lu, and Y. J. Wang, J. Magn. Magn. Mater. 115, 55 (1992).

    ADS  Google Scholar 

  9. A. Katsui, J. Appl. Phys. 47, 4663 (1976).

    ADS  Google Scholar 

  10. Y. J. Wang, J. Magn. Magn. Mater. 84, 39 (1990).

    Article  ADS  Google Scholar 

  11. D. S. Dai, R. Y. Fang, P. Long, S. Zhang, T. J. Ma, C. Dai, and X. X. Zhang, J. Magn. Magn. Mater. 115, 66 (1992).

    ADS  Google Scholar 

  12. R. Coehoorn and R. A. de Groot, J. Phys. F 15, 2135 (1985).

    Article  ADS  Google Scholar 

  13. J. Köhler and J. Kübler, J. Phys.: Condens. Matter 8, 8681 (1996).

    ADS  Google Scholar 

  14. P. M. Oppeneer, V. N. Antonov, T. Kraft, H. Eschrig, A. N. Yaresko, and A. Ya. Perlov, J. Appl. Phys. 80, 1099 (1996).

    Article  ADS  Google Scholar 

  15. D. K. Misemer, J. Magn. Magn. Mater. 72, 267 (1988).

    Article  ADS  Google Scholar 

  16. K. W. Wierman, J. X. Shen, R. D. Kirby, and D. J. Sellmyer, J. Appl. Phys. 75, 6348 (1994).

    Article  ADS  Google Scholar 

  17. Z. Li, H. Luo, W. Lai, Z. Zeng, and Q. Zheng, J. Magn. Magn. Mater. 98, 47 (1991).

    Google Scholar 

  18. V. A. Seredkin, V. Yu. Yakovchuk, L. V. Burkova, and S. Z. Sklyuev, USSR Inventor's Certificate No. 1718273 (1992).

  19. M. Masuda, I. Izawa, S. Yoshino, S. Shiomi, and S. Uchiyama, Jpn. J. Appl. Phys. 26, 707 (1987).

    Google Scholar 

  20. D. Chen, J. Appl. Phys. 42, 3625 (1971).

    Google Scholar 

  21. R. B. van Dover, E. M. Gyorgy, R. P. Frankenthal, M. Hong, and D. J. Siconolfi, J. Appl. Phys. 59, 1291 (1986).

    ADS  Google Scholar 

  22. A. S. Andreenko and L. Zhanda, Fiz. Tverd. Tela (Leningrad) 30, 1530 (1988) [Sov. Phys. Solid State 30, 885 (1988)].

    Google Scholar 

  23. G. A. N. Connell, S. J. Oh, J. Allen, and R. Allen, J. Non-Cryst. Solids 61–62, 1061 (1984).

    Google Scholar 

  24. P. O. Hedén, H. Löfgren, and S. B. M. Hagström, Phys. Rev. Lett. 26, 432 (1971).

    Article  ADS  Google Scholar 

  25. N. Ahmed-Mokhtar, J. P. Petrakian, R. Philip, R. Fraisse, and B. Lazarides, Thin Solid Films 88, 177 (1982).

    Article  Google Scholar 

  26. R. Ahuja, S. Auluck, B. Lohansson, and M. S. S. Brooks, Phys. Rev. B 50, 5147 (1994).

    ADS  Google Scholar 

  27. G. A. N. Connell, J. Magn. Magn. Mater. 54–57, 1561 (1986).

    Google Scholar 

  28. J. Sticht and J. Kübler, Solid State Commun. 53, 529 (1985).

    Article  Google Scholar 

  29. V. V. Nemoshkalenko, V. N. Uvarov, S. V. Borisenko, A. I. Senkevich, and V. D. Borisenko, Metallofiz. Nov. Tekhnol. 17, No. 10, 3 (1995).

    Google Scholar 

  30. S. Labroo, N. Ali, and P. Robinson, J. Appl. Phys. 67, 5292 (1990).

    ADS  Google Scholar 

  31. K. Yoshimura, M. Shiga, and Y. Nakamura, J. Phys. Soc. Jpn. 55, 3585 (1986).

    Article  Google Scholar 

  32. H. Wada, H. Nakamura, K. Yoshimura, M. Shiga, and Y. Nakamura, J. Magn. Magn. Mater. 70, 134 (1987).

    ADS  Google Scholar 

  33. K. N. R. Taylor and M. I. Darby, Physics of Rare-Earth Solids [Chapman and Hall, London, 1972; Mir, Moscow, 1974], 374 pp.

    Google Scholar 

  34. H. Tanaka and S. Takayama, J. Appl. Phys. 67, 5334 (1990).

    ADS  Google Scholar 

  35. Yu. V. Knyazev and G. A. Bolotin, Fiz. Met. Metalloved. 58, 1121 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 41, 91–97 (January 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovchinnikov, S.G., Burkova, L.V., Seredkin, V.A. et al. An analysis of the mechanism of Kerr effect enhancement in Mn/Dy/Bi. Phys. Solid State 41, 80–86 (1999). https://doi.org/10.1134/1.1130733

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130733

Keywords

Navigation