Skip to main content
Log in

EPR and NMR line shapes in disordered ferroelectric crystals

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theory is developed for the magnetic resonance line shape in disordered ferroelectric crystals. In a study of the random fields responsible for inhomogeneous line broadening, nonlinear and spatial correlation effects are taken into account. It is shown that homogeneous broadening depends on the temperature and on the magnitude and orientation of the external magnetic field, as well as on the nonlinearity parameters of the ferroelectric material. The resonance line shape is calculated as the envelope of homogeneously broadened Lorentzian spin packets. Analytic expressions for I 2(ω) and I 3(ω) are introduced to account for nonlinearity and correlation effects of second and third order, respectively. Calculations are done for centrally symmetric crystals, as well as for those without a center of symmetry. It is shown that homogeneous broadening is important near the line peak, while the wings are determined mainly by inhomogeneous broadening. Manifestations of the predicted effects in the spectrum lines of disordered ferroelectric crystals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Glinchuk and V. A. Stephanovich, J. Phys.: Condens. Matter 6, 6317 (1994).

    ADS  Google Scholar 

  2. M. D. Glinchuk and V. A. Stefanovich, Fiz. Tverd. Tela 37, 139 (1995) [Phys. Solid State 37, 75 (1995)].

    Google Scholar 

  3. M. D. Glinchuk and V. A. Sephanovich, Ferroelectrics 169, 281 (1995).

    Google Scholar 

  4. M. D. Glinchuk and R. Farhi, J. Phys.: Condens. Matter 8, 6985 (1996).

    Article  ADS  Google Scholar 

  5. R. Blinc, D. C. Ailion, B. Gunther, and S. Zumer, Phys. Rev. Lett. 57, 2826 (1986).

    Article  ADS  Google Scholar 

  6. V. V. Laguta, M. D. Glinchuk, I. P. Bykov, A. N. Titov, and E. M. Andreev, Fiz. Tverd. Tela 32, 3132 (1990) [Sov. Phys. Solid State 32, 1818 (1990)].

    Google Scholar 

  7. R. Blinc, J. Doninchek, R. Pirc, B. Tadic, B. Zalar, R. Kind, and O. Liechti, Phys. Rev. Lett. 63, 2248 (1989).

    Article  ADS  Google Scholar 

  8. A. U. Stoneham, Rev. Mod. Phys. 41, 82 (1969).

    Article  ADS  Google Scholar 

  9. M. D. Glinchuk, V. G. Grachev, M. F. Deigen, A. B. Roitsin, and L. A. Suslin, Electrical Effects in Radio Frequency Spectroscopy [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  10. M. D. Glinchuk, I. V. Kondakova, and D. V. Anchishkin, Proceedings of the 28th Congress Ampere, Canterbury (1996).

  11. I. B. Aleksandrov, The Theory of Magnetic Relaxation [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  12. R. Kind, R. Blinc, J. Dolinchek, N. Korner, B. Zalar, P. Cevc, N. S. Dalal, and J. Toulouse, Phys. Rev. B 43, 2511 (1991).

    Article  ADS  Google Scholar 

  13. M. Bogs, H. Beige, P. Pitzius, and H. Schmitt, Ferroelectrics 126, 127 (1992).

    Google Scholar 

  14. B. E. Vugmeister, P. di Antonio, and J. Toulouse, Phys. Rev. Lett. 75, 1646 (1995).

    Article  ADS  Google Scholar 

  15. A. Abragam, The Principles of Nuclear Magnetism, Oxford (1961).

  16. U. T. Hochli, R. Knorr, and A. Lidl, Adv. Phys. 39, 405 (1990).

    ADS  Google Scholar 

  17. M. D. Glinchuk, J. P. Bykov, and V. V. Laguta, Ferroelectrics 143, 39 (1993).

    Google Scholar 

  18. N. Korner and R. Kind, Phys. Rev. B 49, 5918 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 40, 340–347 (February 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glinchuk, M.D., Kondakova, I.V. EPR and NMR line shapes in disordered ferroelectric crystals. Phys. Solid State 40, 311–317 (1998). https://doi.org/10.1134/1.1130300

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130300

Keywords

Navigation