Skip to main content
Log in

Kinetics of isothermal creep in metallic glasses including the statistical distribution of activation parameters

  • Defects. Dislocations. Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A generalized theoretical model is proposed for the structural relaxation of metallic glasses under load. Structural relaxation is treated as a set of irreversible, uncorrelated, two-stage atomic displacements in some regions of the structure, the “relaxation centers.” In loaded samples structural relaxation acquires a directional character, leading to the buildup of plastic deformation in accordance with the magnitude and orientation of the applied mechanical stress. General equations are obtained for creep kinetics including a continuous statistical distribution of the principal activation parameters. These equations are compared with the results of a special experiment. The model is found to provide an adequate interpretation of the observed creep kinetics, except for the first 101–102 seconds after loading. It is argued that the initial stage of creep is determined by reversible atomic realignments in relaxation centers having symmetric two-well potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Taub and F. Spaepen, Scr. Metall. 13(3), 195 (1979).

    Article  Google Scholar 

  2. F. Spaepen, Acta Metall. 25, 407 (1977).

    Google Scholar 

  3. A. S. Argon, Acta Metall. 27, 47 (1979).

    ADS  Google Scholar 

  4. A. I. Taub and F. Spaepen, Acta Metall. 28, 1781 (1980).

    Google Scholar 

  5. S. S. Tsao and F. Spaepen, in Proceedings of the Fourth International Conference on Rapid Quench. Metals, Sendai (1981), Vol. 1, p. 463.

    Google Scholar 

  6. S. S. Tsao and F. Spaepen, Acta Metall. 33, 891 (1985).

    Google Scholar 

  7. C. A. Volkert and F. Spaepen, Acta Metall. 37, 1355 (1989).

    Google Scholar 

  8. A. van der Beukel and S. Radelaar, Acta Metall. 31, 419 (1983).

    Google Scholar 

  9. A. van der Beukel, A. van der Zwang, and A. L. Mulder, Acta Metall. 32, 1895 (1984).

    Google Scholar 

  10. A. van der Beukel and E. Huizer, Scr. Metall. 19, 1327 (1985).

    Google Scholar 

  11. A. van der Beukel, E. Huizer, and A. van der Zwang, Acta Metall. 34, 483 (1986).

    Google Scholar 

  12. A. van der Beukel, Acta Metall. 39, 2709 (1991).

    Google Scholar 

  13. A. van der Beukel, Phys. Status Solidi A 128, 285 (1991).

    Google Scholar 

  14. A. van der Beukel, Phys. Status Solidi A 129, 49 (1992).

    Google Scholar 

  15. A. van der Beukel and J. Sietsma, Mater. Sci. Eng. A 179/180, 86 (1994).

    Google Scholar 

  16. A. van der Beukel, Acta. Met. Mater. 42, 1273 (1994).

    Google Scholar 

  17. W. Primak, Phys. Rev. 100, 1677 (1955).

    Article  ADS  Google Scholar 

  18. A. S. Argon, J. Appl. Phys. 39, 4080 (1968).

    Google Scholar 

  19. A. S. Argon and H. Y. Kuo, J. Non-Cryst. Solids 37, 241 (1980).

    Article  Google Scholar 

  20. M. R. J. Gibbs, J. E. Evetts, and J. A. Leake, J. Mater. Sci. 18, 278 (1983).

    Article  Google Scholar 

  21. M. R. J. Gibbs and H.-R. Sinning, J. Mater. Sci. 20, 2517 (1985).

    Article  Google Scholar 

  22. H.-R. Sinning, L. Leonardsson, and R. W. Cahn, Int. J. Rapid Solidif. 1(3), 175 (1984–1985).

    Google Scholar 

  23. A. Hernanod, O. V. Nielsen, and V. Madurga, J. Mater. Sci. 20, 2093 (1985).

    Google Scholar 

  24. H. Friedrichs and H. Neuhauzer, J. Phys.: Condens. Matter 1(44), 8305 (1989).

    Article  ADS  Google Scholar 

  25. G. A. Dzyuba, I. V. Zolotukhin, A. T. Kosilov, and V. A. Khonik, Fiz. Tverd. Tela 33, 3393 (1991) [Sov. Phys. Solid State 33, 1913 (1991)].

    Google Scholar 

  26. V. A. Khonik and A. T. Kosilov, J. Non-Cryst. Solids 170, 270 (1994).

    Article  Google Scholar 

  27. A. Kursumovic, M. G. Scott, and R. W. Cahn, Scr. Metall. Mater. 24, 1307 (1990).

    Article  Google Scholar 

  28. K. Csach, V. Ocelik, J. Miskuf, and V. Z. Bengus, IEEE Trans. Magn. 30, 496 (1994).

    Article  ADS  Google Scholar 

  29. A. Kasardova, V. Ocelik, K. Csach, and J. Miskuf, Philos. Mag. Lett. 71, 257 (1995).

    Google Scholar 

  30. G. Knuyt, L. M. Stals, L. de Schepper, and W. de Ceuninck, Mater. Sci. Eng. A 133, 340 (1991).

    Google Scholar 

  31. A. I. Taub, Acta Metall. 28, 633 (1980).

    Google Scholar 

  32. A. I. Taub and F. E. Lubarsky, Acta Metall. 29, 1939 (1981).

    Google Scholar 

  33. A. T. Kosilov and V. A. Khonik, Izv. Ross. Akad. Nauk, Ser. Fiz. 57(11), 192 (1993).

    Google Scholar 

  34. V. A. Khonik, A. T. Kosilov, and V. A. Mikhailov, J. Non-Cryst. Solids 192–193, 420 (1995).

    Google Scholar 

  35. V. I. Belyavskii, O. P. Bobrov, A. T. Kosilov, and V. A. Khonik, Fiz. Tverd. Tela (St. Petersburg) 38, 30 (1996) [Phys. Solid State 38, 27 (1996)].

    Google Scholar 

  36. O. P. Bobrov, A. T. Kosilov, and V. A. Khonik, Fiz. Met. Metalloved. 81(3), 123 (1996).

    Google Scholar 

  37. O. P. Bobrov, A. T. Kosilov, V. A. Mikhailov and V. A. Khonik, Izv. Ross. Akad. Nauk, Ser. Fiz. 60(9), 124 (1996).

    Google Scholar 

  38. O. P. Bobrov, A. T. Kosilov, and V. A. Khonik, Fiz. Tverd. Tela (St. Petersburg) 38, 1086 (1996) [Phys. Solid State 38, 601 (1996).]

    Google Scholar 

  39. A. T. Kosilov, V. A. Mikhailov, and V. A. Khonik, Fiz. Met. Metalloved. 82(5), 172 (1996).

    Google Scholar 

  40. K. Csach, V. A. Khonik, A. T. Kosilov, and V. A. Mikhailov, in Proceedings of the Ninth International Conference on Rapid Quenched Metastable Mater., Bratislava (25–30 Aug. 1996), in press.

  41. O. P. Bobrov, A. T. Kosilov, and V. A. Khonik, Fiz. Tverd. Tela (St. Petersburg) 38, 3059 (1996) [Phys. Solid State 38, 1673 (1996)].

    Google Scholar 

  42. V. I. Belyavsky, O. P. Bobrov, V. A. Khonik, and A. T. Kosilov, J. de Phys. IV 6,C-8, 715 (1996).

    Google Scholar 

  43. B. S. Berry, in Metallic Glasses, J. J. Gilman and H. J. Leamy (eds.), Amer. Soc. Met., Cleveland, Ohio (1978), p. 161.

    Google Scholar 

  44. V. A. Khonik, A. T. Kosilov, V. A. Kuzmitschev, and G. A. Dzuba, Acta Metall. Mater. 40, 1387 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 39, 2008–2015 (November 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosilov, A.T., Mikhailov, V.A., Sviridov, V.V. et al. Kinetics of isothermal creep in metallic glasses including the statistical distribution of activation parameters. Phys. Solid State 39, 1796–1802 (1997). https://doi.org/10.1134/1.1130176

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130176

Keywords

Navigation