Skip to main content
Log in

The ground state problem in the infinite-U Hubbard model

  • Metals. Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The problem of the ground state of the electronic system in the Hubbard model for U=∞ is discussed. The author investigates the normal (singlet or nonmagnetic) N state of the electronic system over the entire range of electron densities n⩽1. It is shown that the energy of the N state ɛ (1)0 (n) in a one-particle approximation, such as (e.g.) the extended Hartree-Fock approximation, is lower than the energy of the saturated ferromagnetic FM state ɛ FM(n) for all n. The dynamic magnetic susceptibility is calculated in the random phase approximation, and it is shown that the N state is stable over the entire range of electron densities: The static susceptibility (ω=0) does not have a band singularity in the zero-wave vector limit q→0. A formally exact representation is obtained for the mass operator of the one-particle Green’s function, and an approximation of this operator is proposed: M k(E)⋍λF(E), where λ=n(1−n)/(1−n/2)z is the kinematic interaction parameter, z is the number of nearest neighbors, and F(E) is the total single-site Green’s function. For an elliptical density of states the integral equation for F(E) is solved exactly, ad it is shown that the spectral intensity rigorously satisfies the sum rule. The calculated energy of the strongly correlated N state ɛ 0(n)<ɛ FM(n) for all n, and in light of this relationship the author discusses the hypothesis that the ground state of the system is the normal (singlet) state in the thermodynamic limit. The electron distribution function at T=0 differs significantly from the Fermi step; it is “smeared” along the entire energy spectrum, and discontinuities do not occur in the region of the chemical potential m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. R. Soc. London Ser. A 276, 238 (1963); 277, 237 (1964); 281, 401 (1964).

    ADS  Google Scholar 

  2. Yu. A. Izyumov and Yu. N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems [in Russian], Moscow (1987).

  3. Yu. A. Izyumov, M. I. Katsnel’son, and Yu. N. Skryabin, Itinerant Electron Magnetism [in Russian], Moscow (1994).

  4. Yu. A. Izyumov, Usp. Fiz. Nauk 161(11), 1 (1991) [Sov. Phys. Usp. 34, 935 (1991)].

    Google Scholar 

  5. Yu. A. Izyumov, Usp. Fiz. Nauk 165, 403 (1995) [Phys. Usp. 38, 385 (1995)].

    Google Scholar 

  6. E. H. Lieb, in Proceedings of the Conference on Advances in Dynamical Systems and Quantum Physics (Capri, May, 1993), World Scientific Publ. (1993), pp. 1–19.

  7. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).

    Article  ADS  Google Scholar 

  8. Y. Nagaoka, Phys. Rev. 147, 392 (1966).

    Article  ADS  Google Scholar 

  9. G. S. Tian, J. Phys. A 23, 2231 (1993).

    ADS  Google Scholar 

  10. B. Doucot and X. G. Wen, Phys. Rev. B 40, 2719 (1989).

    Article  ADS  Google Scholar 

  11. Y. Fang, A E. Ruckenstein, E. Dagotto, and S. Schmitt-Rink, Phys. Rev. B 40, 7406 (1989).

    ADS  Google Scholar 

  12. A. Sütó, Commun. Math. Phys. 140, 43 (1991).

    Google Scholar 

  13. B. To’th, Lett. Math. Phys. 22, 321 (1991).

    MathSciNet  Google Scholar 

  14. E. V. Kuz’min, Pis’ma Zh. Éksp. Teor. Fiz. 57, 575 (1993).

    Google Scholar 

  15. M. Takahashi, J. Phys. Soc. Jpn. 47, 47 (1989).

    MATH  Google Scholar 

  16. J. Callaway, D. R. Chen, and R. Tang, Phys. Rev. B 35, 3705 (1987).

    ADS  Google Scholar 

  17. J. A. Riera and A. P. Young, Phys. Rev. B 40, 5285 (1989).

    ADS  Google Scholar 

  18. B. S. Shastry, H. R. Krishnamurthy, and P. W. Anderson, Phys. Rev. B 41, 2375 (1990).

    Article  ADS  Google Scholar 

  19. W. von der Linden and D. M. Edwards, J. Phys. Condens. Matter 3, 4917 (1991).

    Article  ADS  Google Scholar 

  20. T. Hanish and E. Müller-Hartmann, Ann. Phys. (Leipzig) 2, 381 (1993).

    Google Scholar 

  21. N. N. Bogolyubov, Selected Works [in Russian], Vol. 3, Kiev (1971).

  22. S. V. Tyablikov, Methods of the Quantum Theory of Magnetism [in Russian], Moscow (1975).

  23. E. G. Goryachev and E. V. Kuzmin, Phys. Lett. 137, 423 (1989); Phys. Lett. 149, 60 (1990).

    Google Scholar 

  24. E. G. Goryachev and E. V. Kuz’min, Teor. Mat. Fiz. 85, 412 (1990).

    Google Scholar 

  25. E. G. Goryachev and E. V. Kuz’min, Pis’ma Zh. Éksp. Teor. Fiz. 52, 949 (1990).

    Google Scholar 

  26. D. N. Zubarev and Yu. G. Rudoi, Usp. Fiz. Nauk 163(3), 103 (1993) [Phys. Usp. 36, 188 (1993)].

    Google Scholar 

  27. J. Hubbard and K. P. Jain, J. Phys. C 1, 1650 (1968).

    ADS  Google Scholar 

  28. E. V. Kuz’min, Fiz. Met. Metalloved. 81, 33 (1996).

    Google Scholar 

  29. D. Pines and P. Nozières, Theory of Quantum Liquids, Benjamin, New York (1966).

    Google Scholar 

  30. F. D. M. Haldane, J. Phys. C 14, 2585 (1981).

    Article  ADS  Google Scholar 

  31. P. W. Anderson, Phys. Rev. Lett. 64, 1839 (1990).

    ADS  Google Scholar 

  32. C. Varma, P. Littlewood, S. Schmitt-Rink et al., Phys. Rev. Lett. 63, 1996 (1989).

    Article  ADS  Google Scholar 

  33. G. E. Volovik, Pis’ma Zh. Éksp. Teor. Fiz. 53, 208 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 39, 193–203 (February 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuz’min, E.V. The ground state problem in the infinite-U Hubbard model. Phys. Solid State 39, 169–178 (1997). https://doi.org/10.1134/1.1130126

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130126

Keywords

Navigation