Skip to main content
Log in

Excitonic polaron in the molecular crystal model: Nonlocal dynamic coherent-potential approximation

  • Semiconductors and Insulators
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A nonlocal dynamic coherent-potential approximation is formulated as a further development of the dynamic coherent-potential method. The nonlocal dynamic coherent-potential approximation is an efficient method of determining the one-exciton Green’s function in a model with the Hamiltonian in the strong-coupling approximation, where a spectrum of optical phonons is assumed, and the exciton-phonon interaction operator is linear or quadratic in the phonon operators. A system of recursion equations is derived, from which the coherent potential is found as a function of the energy E and the wave vector k. An analytical expression is derived for the one-exciton Green’s function in the case of narrow (in comparison with the phonon energy) exciton bands and exciton-phonon interaction linear in the phonon operators. For broader exciton bands and more complex exciton-phonon interaction the system of equations determining the coherent potential represents a recursion algorithm, which can be effectively implemented by numerical means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, New Jersey 1963) [Russian original, Fizmatgiz, Moscow, 1962].

    Google Scholar 

  2. L. D. Lee and D. Pines, Phys. Rev. 88, 960 (1952).

    Article  ADS  Google Scholar 

  3. Yu. A. Firsov, in Polarons edited by Yu. A. Firsov [in Russian], Moscow (1975), p. 205.

  4. Y. B. Levinson and E. I. Rashba, Rep. Prog. Phys. 36, 1499 (1973).

    Article  ADS  Google Scholar 

  5. P. Soven, Phys. Rev. 156, 809 (1967).

    Article  ADS  Google Scholar 

  6. D. W. Taylor, Phys. Rev. 156, 1017 (1967).

    Article  ADS  Google Scholar 

  7. V. Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175, 747 (1968).

    ADS  Google Scholar 

  8. Y. Rangette, Y. Yanase, and J. Kübler, Solid State Commun. 12, 171 (1973).

    Article  Google Scholar 

  9. K. Kubo, J. Phys. Soc. Jpn. 36, 32 (1974).

    Google Scholar 

  10. H. Sumi, J. Phys. Soc. Jpn. 36, 770 (1974).

    Google Scholar 

  11. H. Sumi, J. Phys. Soc. Jpn. 38, 825 (1975).

    Google Scholar 

  12. H. Sumi, J. Chem. Phys. 67, 2943 (1977).

    ADS  Google Scholar 

  13. V. Čápek and V. Špička, Czech. J. Phys. B 34, 115 (1984).

    Google Scholar 

  14. S. Abe, J. Phys. Soc. Jpn. 57, 4029 (1988).

    Google Scholar 

  15. S. Abe, J. Phys. Soc. Jpn. 57, 4036 (1988).

    Google Scholar 

  16. S. Abe, J. Lumin. 45, 272 (1990).

    Google Scholar 

  17. S. Abe, Rev. Solid State Sci. 4, 191 (1990).

    Google Scholar 

  18. Y. Tokura and T. Koda, Solid State Commun. 40, 299 (1981).

    Google Scholar 

  19. Y. Wada, Y. Tokura, and T. Koda, J. Chem. Phys. 86, 3009 (1987).

    ADS  Google Scholar 

  20. N. F. Berk, D. J. Shazeer, and R. A. Tahir-Kheli, Phys. Rev. B 8, 2496 (1973).

    Article  ADS  Google Scholar 

  21. S. V. Tyablikov, Zh. Éksp. Teor. Fiz. 23, 381 (1952).

    MATH  Google Scholar 

  22. É. I. Rashba, Opt. Spektrosk. 3, 568 (1957).

    Google Scholar 

  23. Y. Toyozawa, Prog. Theor. Phys. 26, 29 (1961).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. R. Silbey, Ann. Rev. Phys. Chem. 27, 203 (1976).

    Article  Google Scholar 

  25. J. Singh and A. Matsui, Phys. Rev. B 36, 6094 (1986).

    ADS  Google Scholar 

  26. T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959).

    MATH  Google Scholar 

  27. J. Ranninger, Phys. Rev. B 48, 13 166 (1993).

    Article  Google Scholar 

  28. Y. J. Takada, J. Phys. Chem. Solids 54, 1779 (1993).

    Google Scholar 

  29. W. Gautschi, in Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1964), p. 295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 39, 1560–1563 (September 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izvekov, S.V. Excitonic polaron in the molecular crystal model: Nonlocal dynamic coherent-potential approximation. Phys. Solid State 39, 1383–1388 (1997). https://doi.org/10.1134/1.1130084

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130084

Keywords

Navigation