Skip to main content
Log in

Optical and acoustic polaron formation: Dynamic matrix approach (DMA)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper presents an all-coupling approach (dynamic matrix approach (DMA)) for the description of polaron regimes. The model under investigation is based on an ionic crystal in which the electron-phonon coupling is modified by thermal excitations. The internal displacements of cations and anions as well as the resulting spontaneous polarization highlights the contributions of acoustic and optical phonon modes to Polaron formation. The electron-phonon Hamiltonian is therefore modified and a new quasi-particle is formed from the simultaneous interaction of the charge carrier with both acoustic and optical phonon modes. From this model, we gauge our method by comparison of the derived characteristics to well-known results (weak- and strong-coupling limit). It is observed that, the pyroelectric effect enhances the electron-phonon coupling and the combined contribution of both acoustic and optical modes leads to a composite polaron with a lager inertia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.N. Bogolubov, Aspects of Polaron Theory: Equilibrium and Nonequilibrium Problems (Word Scientific, 2008)

  2. A.V. Soldatov, Condens. Matter Phys. 12, 665 (2009)

    Article  Google Scholar 

  3. L.D. Landau, Phys. Z. Sowjetunion 3, 664 (1965)

    Google Scholar 

  4. L.D. Landau, S.I. Pekar, Helv. Phys. Acta 18, 419 (1948)

    Google Scholar 

  5. J.T. Devreese, Polarons (Wiley, 2008) and cond-mat/0004497v2

  6. A.S. Alexandrov, A.B. Krebs, Sov. Phys. Usp. 35, 345 (1992)

    Article  ADS  Google Scholar 

  7. L.C. Fai, A. Fomethe, V.B. Mborong, S.C. Kenfack, J.T. Diffo, S. Domngang, Superlattices Microstruct. 47, 631 (2010)

    Article  ADS  Google Scholar 

  8. H. Fröhlich, Adv. Phys. 3, 325 (1954)

    Article  ADS  Google Scholar 

  9. S.I. Pekar, Zh. Eksp. Teor. Fiz. 16, 341 (1946)

    Google Scholar 

  10. T.D. Lee, F.E. Low, D. Pines, Phys. Rev. B 90, 297 (1953)

    Article  ADS  Google Scholar 

  11. M.N. Jipdi, L.C. Fai, M. Tchoffo, Superlattices Microstruct. 100, 833 (2016)

    Article  ADS  Google Scholar 

  12. S.J. Byrnes, Basic Theory and Phenomenology of Polarons (2010)

  13. Halah Al Shhri, Nadir Bouarissa, M. Ajmal Khan, J. Lumin. 131, 2153 (2011)

    Article  Google Scholar 

  14. M. Born, Rev. Mod. Phys. 17, 245 (1945)

    Article  ADS  Google Scholar 

  15. G. Iadonisi, G. Capone, V. Cataudella, G. De Filippis, Phys. Rev. B 53, 13497 (1996)

    Article  ADS  Google Scholar 

  16. F.M. Peeters, J.T. Devreese, Phys. Status Solidi (b) 112, 219 (1982)

    Article  ADS  Google Scholar 

  17. F.M. Peeters, J.T. Devreese, Phys. Rev. B 32, 3515 (1985)

    Article  ADS  Google Scholar 

  18. R.P. Feynman, A.R. Hibb, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

  19. S.I. Pekar, Research in Electron Theory of Crystals (Gostekhizdat, Moscow, 1951)

  20. F. Grusdt, Phys. Rev. B 93, 144302 (2016)

    Article  ADS  Google Scholar 

  21. R.P. Feynman, Statistical Mechanics (Benjamin, New York, 1972)

  22. Charles Kittel, Introduction to Solid State Physics 8th Edition (2004)

  23. G. Webster John, The Measurement, Instrumentation, and Sensors Handbook (1999)

  24. S.B. Lang, Phys. Today 58, 31 (2005)

    Article  Google Scholar 

  25. B. Szigeti, Phys. Rev. Lett. 35, 1532 (1975)

    Article  ADS  Google Scholar 

  26. Kaikai Liu et al., Appl. Phys. Lett. 111, 222106 (2017)

    Article  ADS  Google Scholar 

  27. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Cengage Learning, 1976)

  28. Kristen Kaasbjerg, S. Kristian Thygesen, Antti-Pekka Jauho, Phys. Rev. B 87, 235312 (2013)

    Article  ADS  Google Scholar 

  29. Jian Liu, V. Maria, Fernandez-Serra, Philip B. Allen, arXiv:1603.00657v1 [cond-mat.mtrl-sci] (2016)

  30. A. Sumi, Y. Toyozawa, J. Phys. Soc. Jpn. 35, 137 (1973)

    Article  ADS  Google Scholar 

  31. L.C. Fai, M. Tchoffo, M.N. Jipdi, Eur. Phys. J. B 88, 306 (2015)

    Article  ADS  Google Scholar 

  32. L.C. Fai, M. Tchoffo, M.N. Jipdi, Eur. Phys. J. Plus 130, 71 (2015)

    Article  Google Scholar 

  33. L.C. Fai, M. Tchoffo, M.N. Jipdi, Eur. Phys. J. B 88, 181 (2015)

    Article  ADS  Google Scholar 

  34. L.C. Fai, M. Tchoffo, M.N. Jipdi, Eur. Phys. J. B 88, 333 (2015)

    Article  ADS  Google Scholar 

  35. M.N. Jipdi, L.C. Fai, M. Tchoffo, Phys. Lett. A 380, 3665 (2016)

    Article  ADS  Google Scholar 

  36. Wu Ying, Yang Xiaoxuem, Phys. Rev. Lett. 98, 013601 (2007)

    Article  ADS  Google Scholar 

  37. M.N. Jipdi, L.C. Fai, M. Tchoffo, Superlattices Microstruct. 100, 833 (2016)

    Article  ADS  Google Scholar 

  38. M.N. Jipdi, L.C. Fai, M. Tchoffo, Physica E 96, 36 (2018)

    Article  ADS  Google Scholar 

  39. W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954)

    Article  Google Scholar 

  40. F.M. Peeters, P. Warmenbol, J.T. Devreese, Europhys. Lett. 3, 1219 (1987)

    Article  ADS  Google Scholar 

  41. F.M. Peeters, J.T. Devreese, Phys. Rev. B 25, 7302 (1982)

    Article  ADS  Google Scholar 

  42. H. Shoji, N. Tokuda, J. Phys. C 14, 1231 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Jipdi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jipdi, M.N., Fokou, I.F., Tchoffo, M. et al. Optical and acoustic polaron formation: Dynamic matrix approach (DMA). Eur. Phys. J. Plus 134, 525 (2019). https://doi.org/10.1140/epjp/i2019-12902-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12902-9

Navigation