Skip to main content
Log in

Relaxation of post-illumination electric fields in strongly biased high-resistance structures with a single deep impurity level

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper examines how an electric field relaxes when a discontinuous large carrier-depleting voltage applied to high-resistance symmetric metal-semiconductor-metal (MSM) and metal-insulator-semiconductor-insulator-metal (MISIM) structures having a single impurity level, and how its energy level ɛ t=E cE t and the tunneling transparency T n,p of the metal-semiconductor or metal-insulator boundary affect the relaxation. It is shown that the relaxation of the field and the form of its steady-state distribution depend on the ratio of the time constant t p in the majority-carrier (hole) region to the ionization time τ −1 t n (n *+n 1)+α p (p *+p 1) of a deep trap in the bulk. This ratio determines the relative contributions of free ρ p,n and bound charge dnsities ρ t (where α n,p is the coefficient for capture by an impurity, and p *, n *, p 1, n 1 are equilibrium concentrations and Shockley-Read constants in the bulk). For τ t ≈(τ t )maxt p t ≫ it is found that ρ p,n and ρ t ≫ρ p,n , which corresponds to a trap energy close to \(\varepsilon _t = {{E_g } \mathord{\left/ {\vphantom {{E_g } 2}} \right. \kern-\nulldelimiterspace} 2} + kT\ln \sqrt {{{N_c \alpha _n } \mathord{\left/ {\vphantom {{N_c \alpha _n } {(N_\upsilon \alpha _p )}}} \right. \kern-\nulldelimiterspace} {(N_\upsilon \alpha _p )}}} \), independent of the value of T n,p , decaying oscillations arise in the concentration distribution, bulk charge, and field appear in the bulk. The amplitude of these oscillations reaches a maximum at time t≈0.4τ t. Decreasing the ratio α pn causes τ t to deviate from (τ t)max. When this happens, the field no longer oscillates; instead, it increases with positive curvature in the cathode portion of the bulk. The quantity T n,p determines the behavior of the field in the neighborhood of the anode. The value of (dE/dx)0 is positive for MSM structures (T n,p ≈1), and negative for MISIM structures (T n,p ≈0). For transparencies close to a critical value T 0 n,p , the field in the structure remains almost uniform over an impurity ionization time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photosensitive Electrooptic Media in Holography and Optical Information processing [in Russian], Nauka, Leningrad (1983).

    Google Scholar 

  2. L. S. Berman and A. A. Lebedev, Capacitive Spectroscopy of Deep Levels in Semiconductors [in Russian], Nauka, Leningrad (1981).

    Google Scholar 

  3. V. N. Astratov and A. V. Il’inskii, Fiz. Tverd. Tela (Leningrad) 24, 108 (1982) [Sov. Phys. Solid State 24, 61 (1982)].

    Google Scholar 

  4. V. N. Astratov, A. V. Il’inskii, and M. V. Mel’nikov, Fiz. Tverd. Tela (Leningrad) 25, 2163 (1983) [Sov. Phys. Solid State 25, 1244 (1983)].

    Google Scholar 

  5. V. N. Astratov, A. V. Il’inskii, and V. A. Kiselev, Fiz. Tverd. Tela (Leningrad) 26, 2843 (1984) [Sov. Phys. Solid State 26, 1720 (1984)].

    Google Scholar 

  6. V. N. Astratov and A. V. Il’inskii, FTI preprint No. 1091 (Leningrad, 1986).

  7. A. S. Furman, Fiz. Tverd. Tela (Leningrad) 28, 2083 (1986) [Sov. Phys. Solid State 28, 1164 (1986)].

    Google Scholar 

  8. A. S. Furman, Fiz. Tekh. Poluprovodn. 22, 2138 (1988) [Sov. Phys. Semicond. 22, 1350 (1988)].

    Google Scholar 

  9. V. N. Astratov, A. S. Furman, and A. V. Ilinskii, Semiconductors and Insulators: Optical and Spectroscopic Research (Nova Sci. Publ. Inc., 1992).

  10. V. V. Bryksin, L. I. Korovin, M. P. Petrov, and A. V. Khomenko, Fiz. Tverd. Tela (Leningrad) 24, 149 (1982) [Sov. Phys. Solid State 24, 82 (1982)].

    Google Scholar 

  11. V. V. Bryksin and L. I. Korovin, Fiz. Tverd. Tela (Leningrad) 25, 2346 (1983) [Sov. Phys. Solid State 25, 1347 (1983)].

    Google Scholar 

  12. V. V. Bryksin, L. I. Korovin, and V. I. Marakhonov, Zh. Tekh. Fiz. 53(6), 1133 (1983) [Sov. Phys. Tech. Phys. 28, 686 (1983)].

    Google Scholar 

  13. V. V. Bryksin and L. I. Korovin, Fiz. Tverd. Tela (Leningrad) 28, 148 (1986) [Sov. Phys. Solid State 28, 79 (1986)].

    Google Scholar 

  14. V. V. Bryksin, L. I. Korovin, and Yu. K. Kuz’min, Fiz. Tverd. Tela (Leningrad) 28, 2728 (1986) [Sov. Phys. Solid State 28, 1528 (1986)].

    Google Scholar 

  15. P. G. Kasherininov, A. V. Kichaev, and A. A. Tomasov, Fiz. Tekh. Poluprovodn. 29, 2092 (1995) [Semiconductors 29, 1092 (1995)].

    Google Scholar 

  16. P. G. Kasherininov, B. I. Reznikov, and G. V. Tsarenkov, Fiz. Tekh. Poluprovodn. 26, 1480 (1992) [Sov. Phys. Semicond. 26, 832 (1992)].

    Google Scholar 

  17. B. I. Reznikov and G. V. Tsarenkov, Fiz. Tekh. Poluprovodn. 27, 1262 (1993) [Semiconductors 27, 699 (1993)].

    Google Scholar 

  18. B. I. Reznikov and G. V. Tsarenkov, Fiz. Tekh. Poluprovodn. 31, 23 (1997) [Semiconductors 31, 19 (1997)].

    Google Scholar 

  19. B. I. Reznikov and G. V. Tsarenkov, Fiz. Tekh. Poluprovodn. 28, 1788 (1994) [Semiconductors 28, 991 (1994)].

    Google Scholar 

  20. B. I. Reznikov and G. V. Tsarenkov, Fiz. Tekh. Poluprovodn. 29, 1430 (1995) [Semiconductors 29, 743 (1995)].

    Google Scholar 

  21. B. I. Reznikov and G. V. Tsarenkov, Fiz. Tekh. Poluprovodn. 29, 2199 (1995) [Semiconductors 29, 1147 (1995)].

    Google Scholar 

  22. B. I. Reznikov, Fiz. Tekh. Poluprovodn. 30, 1497 (1996) [Semiconductors 30, 787 (1996)].

    Google Scholar 

  23. B. I. Reznikov, Fiz. Tekh. Poluprovodn. 31, 1003 (1997) [Semiconductors 31, 857 (1997)].

    Google Scholar 

  24. V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics, p. 306 [Russian original, Nauka, Moscow, 1977].

  25. J. G. Simmons and G. W. Taylor, Solid-State Electron. 29, 287 (1986).

    Article  Google Scholar 

  26. D. L. Scharfetter and H. K. Gummel, IEEE Trans. Electron Devices ED-16, 64 (1969).

    Google Scholar 

  27. A. A. Samarskii, Introduction to the Theory of Difference Schemes, p. 532 [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  28. R. F. Kazarinov, R. A. Suris, and V. I. Fuks, Fiz. Tekh. Poluprovodn. 7, 149 (1973) [Sov. Phys. Semicond. 7, 102 (1973)].

    Google Scholar 

  29. R. A. Suris and V. I. Fuks, Fiz. Tekh. Poluprovodn. 12, 2319 (1978) [Sov. Phys. Semicond. 12, 1380 (1978)].

    Google Scholar 

  30. R. A. Suris and V. I. Fuks, Fiz. Tekh. Poluprovodn. 13, 138 (1979) [Sov. Phys. Semicond. 13, 79 (1979)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 39, 1775–1782 (October 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reznikov, B.I. Relaxation of post-illumination electric fields in strongly biased high-resistance structures with a single deep impurity level. Phys. Solid State 39, 1582–1589 (1997). https://doi.org/10.1134/1.1129902

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1129902

Keywords

Navigation