Skip to main content
Log in

Interface traps contribution on transport mechanisms under illumination in metal–oxide–semiconductor structures based on silicon nanocrystals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The transport phenomena in metal–oxide–semiconductor (MOS) structures having silicon nanocrystals (Si-NCs) inside the dielectric layer have been investigated, in dark condition and under visible illumination. At first, using deep-level transient spectroscopy (DLTS), we find the presence of series electron traps having very close energy levels (comprised between 0.28 and 0.45 eV) for ours devices (with/without Si-NCs). And a single peak appears at low temperature only for MOS with Si-NCs related to Si-NCs DLTS response. In dark condition, the conduction mechanism is dominated by the thermionic fast emission/capture of charge carriers from the highly doped polysilicon layer to Si-substrate through interface trap states for MOS without Si-NCs. The tunneling of charge carriers from highly poly-Si to Si substrate trough the trapping/detrapping mechanism in the Si-NCs, at low temperature, contributed to the conduction mechanism for MOS with Si-NCs. The light effect on transport mechanisms has been investigated using current–voltage (IV), and high frequency capacitance–voltage (CV) methods. We have been marked the photoactive trap effect in inversion zone at room temperature in IV characteristics, which confirm the contribution of photo-generated charge on the transport mechanisms from highly poly-Si to Si substrate trough the photo-trapping/detrapping mechanism in the Si-NCs and interfaces traps levels. These results have been confirmed by an increasing about 10 pF in capacity’s values for the CV characteristics of MOS with Si-NCs, in the inversion region for inverse high voltage applied under photoexcitation at low temperature. These results are helpful to understand the principle of charge transport in dark condition and under illumination, of MOS structures having Si-NCs in the SiOx= 1.5 oxide matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.I. Hanafi, S. Tiwari, I. Khan, IEEE Trans. Electron. Devices 43, 1553 (1996)

    Article  ADS  Google Scholar 

  2. Y.-C. King, T.-J. King, C. Hu, IEEE Trans. Electron. Devices 48, 696 (2001)

    Article  ADS  Google Scholar 

  3. B.H. Koh, E.W.H. Kan, W.K. Chim, W.K. Choi, D.A. Antoniadis, E.A. Fitzgerald, J. Appl. Phys. 97, 124305 (2005)

    Article  ADS  Google Scholar 

  4. K.H. Chiang, S.W. Lu, Y.H. Peng, C.H. Kuan, C.S. Tsai, J. Appl. Phys. 104, 014506 (2008)

    Article  ADS  Google Scholar 

  5. I.B. Akca, A. Dana, A. Aydinli, R. Turan, Appl. Phys. Lett. 92, 052103 (2008)

    Article  ADS  Google Scholar 

  6. R. Peibst, J.S. de Sousa, K.R. Hofmann, Phys. Rev. B 82, 195415 (2010)

    Article  ADS  Google Scholar 

  7. B. Pivac, P. Dubcek, I. Capan, I. Zulim, T. Betti, H. Zorc, S. Bernstroff, J. Nanosci. Nanotechnol. 9, 3853 (2009)

    Article  Google Scholar 

  8. F. Yun, B.J. Hinds, S. Hatatani, S. Oda, Jpn. J. Appl. Phys. 39, L792 (2000)

    Article  ADS  Google Scholar 

  9. R. Peibst, M. Erenburg, E. Bugiel, K.R. Hofmann, J. Appl. Phys. 108, 054316 (2010)

    Article  ADS  Google Scholar 

  10. J.S. de Sousa, V.N. Freire, J.-P. Leburton, Appl. Phys. Lett. 90, 223504 (2007)

    Article  ADS  Google Scholar 

  11. R. Beyer, J. von Borany, J. Appl. Phys. 105, 064513 (2009)

    Article  ADS  Google Scholar 

  12. L. Dobaczewski, A.R. Peaker, K.B. Nielsen, J. Appl. Phys. 96, 4689 (2004)

    Article  ADS  Google Scholar 

  13. S.W. Lin, C. Balocco, M. Missous, A.R. Peaker, A.M. Song, Phys. Rev. B 72, 165302 (2005)

    Article  ADS  Google Scholar 

  14. M.M. Ben Salem, M.A. Zaidi, H. Maaref, J.C. Bourgoin, J. Appl. Phys. 78, 1004 (1995)

    Article  ADS  Google Scholar 

  15. S. Chatbouri, F. Abdelali, M. Troudi, A. Kalboussi, A. Souifi, The important contribution of photo-generated charges to the silicon nanocrystals photo-charging/discharging-response time at room temperature in MOS-photodetectors. Superlattices Microstruct. 94, 93–100 (2016)

    Article  ADS  Google Scholar 

  16. V.P. I.Kovacevic, I.D. Markevich, B. Hawkins, A.R. Pivac, Peaker, J. Phys. Condens. Matter. 17, S2229–S2235 (2005)

    Article  ADS  Google Scholar 

  17. I.V. Antonova, V.A. Volodin, E.P. Neustroev, S.A. Smagulova, J. Jedrzejewsi, I. Balberg, J. Appl. Phys. 106, 064306–064316 (2009)

    Article  ADS  Google Scholar 

  18. S.M. Sze, Physics of Semiconductor Devices, 2 nd Ed, New-York: Wiley, 1981

    Google Scholar 

  19. L.S. Kim, E.K. Kim, J.O. Kim, S.J. Lee, S.K. Noh, Study on carrier trapping and emission processes in InAs/GaAs self-assembled quantum dots by varying filling pulse width during DLTS measurements. Superlattices Microstruct. 46(1–2), 312–317 (2009)

    Article  ADS  Google Scholar 

  20. I. Capan, B. Pivac, R. Slunjski Phys. Status Solidi C 8(3), 816–818 (2011). https://doi.org/10.1002/pssc.201000076

    Article  ADS  Google Scholar 

  21. K. Yamasaki, M. Yoshida, T. Sugano, Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes. Jpn. J. Appl. Phys. 18(1), 113–122 (1979)

    Article  ADS  Google Scholar 

  22. R. Beyer, H. Burghardt, J. von Borany Germanium nanocrystals in SiO2: relevance of the defect state distribution at the Si–SiO2 interface. Phys. Status Solidi C 10(4)607–610 (2013). https://doi.org/10.1002/pssc.201200883

    Article  ADS  Google Scholar 

  23. T. Adam, J. Kolodzey, C.P. Swann, M.W. Tsao, J.F. Rabolt, The electrical properties of MIS capacitors with AlN gate dielectrics. Appl. Surf. Sci. 175, 428–435 (2001)

    Article  ADS  Google Scholar 

  24. W.A. Hill, C.C. Coleman, A single-frequency approximation for interface-state density determination. Solid-State Electron. 23(9), 987–993 (1980)

    Article  ADS  Google Scholar 

  25. E.H. Nicillian, A. Goetzberger, MOS conductance technique for measuring surface state parameters. Appl. Phys. Lett. 7, 216 (1965)

    Article  ADS  Google Scholar 

  26. S. Logothetidis, E. Evangelou, N. Konofaos, Properties and density of states of the interface between silicon and carbon films rich in sp 3 bonds. J. Appl. Phys. 82, 5017 (1997)

    Article  ADS  Google Scholar 

  27. E.H. Nicollian, J.R. Brews, Mos: Metal Oxide Semiconductor Physical and Technology (Wiley, New York, 1982), p. 906

    Google Scholar 

  28. Y. Shi, K. Saito, H. Ishikuro, T. Hiramoto, Effects of traps on charge storage characteristics in metal-oxidesemiconductor memory structures based on silicon nanocrystals. J. Appl. Phys. 84, 2358 (1998). https://doi.org/10.1063/1.368346

    Article  ADS  Google Scholar 

  29. M. Troudi, N. Sghaier, A. Kalboussi, A. Souifi, Analysis of photogenerated random telegraph signal in single electron photodetector. Opt. Express 18(1), 1–9 (2010)

    Article  ADS  Google Scholar 

  30. N.M. Park, C.J. Choi, T.Y. Seong, S.J. Park, Phys. Rev. Lett. 86, 1355 (2001)

    Article  ADS  Google Scholar 

  31. T. Takagahara, K. Takeda, Phys. Rev. B 46, 15578 (1992)

    Article  ADS  Google Scholar 

  32. D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Küzner, F. Koch, Phys. Rev. B 61, 4485 (2000)

    Article  ADS  Google Scholar 

  33. S. Chatbouri, M. Troudi, N. Sghaier, A. Kalboussi, V. Aimez, D. Drouin, A. Souifi, Direct exchange between silicon nanocrystals and tunnel oxide traps under illumination on single electron photodetector. Semiconductors 50(9), 1163–1167 (2016)

    Article  ADS  Google Scholar 

  34. C. Busseret, A. Souifi, T. Baron, G. Guillot, F. Martin, M.N. Semeria, J. et Gautier Discharge mechanisms modeling in LPCVD silicon nanocrystals using C–V and capacitance transient techniques. Superlattices Microstruct. 28(5–6), 493–500 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Professors “Dominique Drouin”, “Vincent Aimez” and Lino Eugéne from “University of Sherbrooke Canada for technical supports. And we take advantage to thank “CEA-LETI” in Grenoble for the supply of silicon nanocrystals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chatbouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatbouri, S., Troudi, M., Kalboussi, A. et al. Interface traps contribution on transport mechanisms under illumination in metal–oxide–semiconductor structures based on silicon nanocrystals. Appl. Phys. A 124, 114 (2018). https://doi.org/10.1007/s00339-017-1533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1533-x

Navigation