Skip to main content
Log in

Kinetics of microstructure and selective mechanism of fracture of metal surface layer under friction

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The kinetics of the evolution of the microstructure of a nickel surface layer under friction is studied. It is found that the feeding of the surface layer with elastic energy occurs. This process leads to the formation of slip bands, lamellar structures, and micropores resulting in the progressive dispersion of the surface layer, which, together with substantial brittleness, causes the selective mechanism of surface layer fracture to develop locally in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinchuk, V.G., Savitskii, B.A., and Bulatov, A.S., Peculiarities of nickel dislocation structure change at friction, poverkhnost: Fiz., Khim., Mekh., 1983, no. 9, pp. 72–75.

    Google Scholar 

  2. Pinchuk, V.G., Korotkevich, S.V., and Bobovich, S.O., Structural aspects of microplastic deformation and destruction of metals at friction, Deform. Razrush. Mater., 2007, no. 9, pp. 23–28.

    Google Scholar 

  3. Pinchuk, V.G., Kharkhasov, B.D., Torop, V.V., and Gerber, Yu., Nickel dislocation structure at friction, Trenie Iznos, 1981, vol. 2, pp. 389–392.

    CAS  Google Scholar 

  4. Pinchuk, V.G. and Shidlovskaya, E.G., Interconnection of microstructural changes with kinetics of friction of metal surface layer at friction, Trenie Iznos, 1989, vol. 10, pp. 965–972.

    CAS  Google Scholar 

  5. Bulatov, A.S., Pinchuk, V.G., and Lazareva, M.B., Dependence of FMR line from dislocation density in nickel, Fiz. Met. Metalloved., 1972, vol. 34, pp. 1066–1069.

    CAS  Google Scholar 

  6. Pinchuk, V.G., Korotkevich, S.V., Bobovich, S.O., and Pleskachevskii, Yu.M., Study of ferromagnetic dislocation structure by ferromagnetic resonance method, pribory, Instrumenty, Materialy, 2010, vol. 15, no. 4, pp. 108–112.

    CAS  Google Scholar 

  7. Suh, N.P., The delamination theory of wear, Wear, 1973, vol. 25, pp. 111–124.

    Article  CAS  Google Scholar 

  8. Pinchuk, V.G. and Korotkevich, S.V., Microstructure and strength properties of submicro and nanocrystalline nickel under friction, Model. Numer. Simul. Mater. Sci., 2013, no. 3, pp. 8–13.

    Google Scholar 

  9. Vladimirov, V.N. and Khannanov, Sh.Kh., Actual problems of dislocation crack origin theory, Fiz. Met. Metalloved., 1970, vol. 30, pp. 490–510.

    CAS  Google Scholar 

  10. Neumann, P., Coarse slip model of fatigue, Acta Metallurgy, 1969, vol. 17, pp. 1219–1225.

    Article  CAS  Google Scholar 

  11. Embury, J.D., Petch, N.J., and Wraith, A.E., The fracture of mild steel laminates, Trans. AIME, 1967, vol. 239, pp. 114–118.

    CAS  Google Scholar 

  12. Moser, B., Hanlon, T., Kumar, K.S., and Suresh, S., Cyclic strain hardening of nanocrystalline nickel, Scripta Mater., 2006, vol. 54, pp. 1151–1155.

    Article  CAS  Google Scholar 

  13. Tarasov, S. and Kolubaev, A., Effect of friction on subsurface layer microstructure in friction and martensitic steels, Wear, 1999, vol. 231, pp. 228–234.

    Article  Google Scholar 

  14. Panin, V., Kolubaev, A., Tarasov, S., and Popov, V., Subsurface layer formation during sliding friction, Wear, 2002, vol. 249, pp. 860–867.

    Article  Google Scholar 

  15. Panin, V.E. and Panin, A.V., Scale levels of plastic deformation and destruction of nanostructured materials, Nanotekhnika, 2005, no. 3, pp. 28–42.

    Google Scholar 

  16. Tarasov, S.Yu. and Kolubaev, A.V., Deformation development on different scaled levels in surface layers at friction, Deform. Razrush. Mater., 2008, no. 1, pp. 21–27.

    Google Scholar 

  17. Tyumentsev, A.N. Pinzhin, Yu.P., Korotaev, A.D., Tret’yak, M.V., Islamgaliev, R.K., and Valiev, R.Z., Electron-microscopic investigation of grain boundaries in ultrafine-grained nickel produced by severe plastic deformation, phys. Met. Metallogr., 1998, vol. 86, pp. 604–610.

    Google Scholar 

  18. Intrater, J. and Machlin, E.S., Grain boundary and intercristalline cracking, Acta. Metall., 1959, vol. 7, pp. 149–153.

    Article  Google Scholar 

  19. Pinchuk, V.G. and Korotkevich, S.V., Kinetics of Strengthening and Destruction of Metal Surface at Friction Lambert Academic Publishing, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Korotkevich.

Additional information

Original Russian Text © V.G. Pinchuk, I.A. Buyanovskiy, S.V. Korotkevich, 2015, published in Materialovedenie, 2015, No. 3, pp. 36–43.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinchuk, V.G., Buyanovskiy, I.A. & Korotkevich, S.V. Kinetics of microstructure and selective mechanism of fracture of metal surface layer under friction. Inorg. Mater. Appl. Res. 6, 355–362 (2015). https://doi.org/10.1134/S2075113315040206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113315040206

Keywords

Navigation