Skip to main content
Log in

Linking microstructural evolution and macro-scale friction behavior in metals

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A correlation is established between the macro-scale friction regimes of metals and a transition between two dominant atomistic mechanisms of deformation. Metals tend to exhibit bi-stable friction behavior—low and converging or high and diverging. These general trends in behavior are shown to be largely explained using a simplified model based on grain size evolution, as a function of contact stress and temperature, and are demonstrated for self-mated pure copper and gold sliding contacts. Specifically, the low-friction regime (where µ < 0.5) is linked to the formation of ultra-nanocrystalline surface films (10–20 nm), driving toward shear accommodation by grain boundary sliding. Above a critical combination of stress and temperature—demonstrated to be a material property—shear accommodation transitions to dislocation dominated plasticity and high friction, with µ > 0.5. We utilize a combination of experimental and computational methods to develop and validate the proposed structure–property relationship. This quantitative framework provides a shift from phenomenological to mechanistic and predictive fundamental understanding of friction for crystalline materials, including engineering alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Bowden TF, Hughes TP (1938) Friction of clean metals and the influence of surface films. Nature 142:1039–1040

    Article  Google Scholar 

  2. Bowden FP, Tabor D (1939) The area of contact between stationary and between moving surfaces. Proc R Soc Lond A 169:391–413

    Article  Google Scholar 

  3. Bowden FP, Young JE (1951) Friction of clean metals and the influence of adsorbed films. Proc R Soc Lond A 208:311–325

    Article  Google Scholar 

  4. Bowden FP, Tabor D (1964) Friction and lubrication of solids, vol II. Oxford University Press, Oxford

    Google Scholar 

  5. Antler M (1980) Sliding wear of metallic contacts. In: Proceedings of the 26th annual holm conference on electrical contacts, pp. 3–24

  6. Rigney DA, Hirth JP (1979) Plastic deformation and sliding friction of metals. Wear 53:345–370

    Article  Google Scholar 

  7. Burton RA, Russel JA, Ku PM (1962) Metallic friction at cryogenic temperature. Wear 5:60–68. doi:10.1016/0043-1648(62)90181-3

    Article  Google Scholar 

  8. Prasad SV, Battaile CC, Kotula PG (2011) Friction transitions in nanocrystalline nickel. Scr Mater 64:729–732. doi:10.1016/j.scriptamat.2010.12.027

    Article  Google Scholar 

  9. Tamai Y (1961) Friction of metals in reciprocating sliding. J Appl Phys 32:1437. doi:10.1063/1.1728374

    Article  Google Scholar 

  10. Prasad SV, Michael JR, Christenson TR (2003) EBSD studies on wear-induced subsurface regions in LIGA nickel. Scr Mater 48:255–260

    Article  Google Scholar 

  11. Padilla HA, Boyce BL, Battaile CC, Prasad SV (2013) Frictional performance and near-surface evolution of nanocrystalline Ni-Fe as governed by contact stress and sliding velocity. Wear 297:860–871. doi:10.1016/j.wear.2012.10.018

    Article  Google Scholar 

  12. Argibay N, Bares JA, Keith JH et al (2010) Copper-beryllium metal fiber brushes in high current density sliding electrical contacts. Wear 268:1230–1236

    Article  Google Scholar 

  13. Argibay N, Sawyer WG (2012) Low wear metal sliding electrical contacts at high current density. Wear 274–275:229–237. doi:10.1016/j.wear.2011.09.003

    Article  Google Scholar 

  14. Feser T, Stoyanov P, Mohr F, Dienwiebel M (2013) The running-in mechanisms of binary brass studied by in situ topography measurements. Wear 303:465–472. doi:10.1016/j.wear.2013.03.047

    Article  Google Scholar 

  15. Greiner C, Liu Z, Strassberger L, Gumbsch P (2016) Sequence of stages in the microstructure evolution in copper under mild reciprocating tribological loading. ACS Appl Mater Interfaces 8:15809–15819. doi:10.1021/acsami.6b04035

    Article  Google Scholar 

  16. Thompson CV (1990) Grain growth in thin films. Annu Rev Mater Sci 20:245–268. doi:10.1007/s13398-014-0173-7.2

    Article  Google Scholar 

  17. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Merwin JE, Johnson KL (1963) An analysis of plastic deformation in rolling contact. Proc Inst Mech Eng 177:676–690. doi:10.1243/PIME_PROC_1963_177_052_02

    Article  Google Scholar 

  19. Antler M (1964) Processes of metal transfer and wear. Wear 7:181–203

    Article  Google Scholar 

  20. Johnson KL (1995) Contact mechanics and the wear of metals. Wear 190:162–170. doi:10.1016/0043-1648(95)06665-9

    Article  Google Scholar 

  21. Rupert TJ, Schuh CA (2010) Sliding wear of nanocrystalline Ni–W: structural evolution and the apparent breakdown of Archard scaling. Acta Mater 58:4137–4148. doi:10.1016/j.actamat.2010.04.005

    Article  Google Scholar 

  22. Argibay N, Furnish TA, Boyce BL et al (2016) Stress-dependent hardness and grain size evolution of Ni-W and its impact on friction behavior. Scr Mater 123:26–29. doi:10.1016/j.scriptamat.2016.05.009

    Article  Google Scholar 

  23. Pougis A, Toth LS, Fundenberger JJ, Borbely A (2014) Extension of the Derby relation to metals severely deformed to their steady-state ultrafine-grain size. Scr Mater 72–73:59–62. doi:10.1016/j.scriptamat.2013.10.020

    Article  Google Scholar 

  24. De Bresser J, Ter Heege J, Spiers C (2001) Grain size reduction by dynamic recrystallization: can it result in major rheological weakening? Int J Earth Sci 90:28–45. doi:10.1007/s005310000149

    Article  Google Scholar 

  25. Lo CC, Augis JA, Pinnel MR (1979) Hardening mechanisms of hard gold. J Appl Phys 50:6887–6891

    Article  Google Scholar 

  26. Antler M (1973) Tribological properties of gold for electric contacts. IEEE Trans Parts Hybrids Packag 9:4–14

    Article  Google Scholar 

  27. Horn G, Merl W (1974) Friction and wear of electroplated hard gold deposits for connectors. IEEE Trans Parts Hybrids Packag 10:53–59

    Article  Google Scholar 

  28. Argibay N, Sawyer W (2012) Frictional voltammetry with copper. Tribol Lett 46:337–342. doi:10.1007/s11249-012-9957-0

    Article  Google Scholar 

  29. Argibay N, Bares JA, Sawyer WG (2009) Asymmetric wear behavior of self-mated copper fiber brush and slip-ring sliding electrical contacts in a humid carbon dioxide environment. Wear 268:455–463

    Article  Google Scholar 

  30. Bares JA, Argibay N, Mauntler N et al (2009) High current density copper-on-copper sliding electrical contacts at low sliding velocities. Wear 267:417–424

    Article  Google Scholar 

  31. Dienwiebel M, Verhoeven GS, Pradeep N et al (2004) Superlubricity of graphite. Phys Rev Lett 92:126101–1. doi:10.1103/PhysRevLett.92.126101

    Article  Google Scholar 

  32. Erdemir A, Donnet C (2006) Tribology of diamond-like carbon films: recent progress and future prospects. J Phys D 39:R311

    Article  Google Scholar 

  33. Scharf TW, Kotula PG, Prasad SV (2010) Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater 58:4100–4109. doi:10.1016/j.actamat.2010.03.040

    Article  Google Scholar 

  34. Finch GI, Quarrell AG, Roebuck JS (1934) The Beilby Layer. Proc R Soc A 145:676–681. doi:10.1098/rspa.1934.0129

    Article  Google Scholar 

  35. Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys11The Golden Jubilee Issue—Selected topics in materials science and engineering: past, Present and Future, edited by S. Suresh. Acta Mater 51:5743–5774. doi:10.1016/j.actamat.2003.08.032

    Article  Google Scholar 

  36. Van Swygenhoven H, Derlet P, Hasnaoui A (2002) Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys Rev B 66:24101. doi:10.1103/PhysRevB.66.024101

    Article  Google Scholar 

  37. Van Swygenhoven H, Derlet PM (2001) Grain-boundary sliding in nanocrystalline fcc metals. Phys Rev B 64:224105. doi:10.1103/PhysRevB.64.224105

    Article  Google Scholar 

  38. Yamakov V, Wolf D, Phillpot SR et al (2004) Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3:43–47. doi:10.1038/nmat1035

    Article  Google Scholar 

  39. Hamilton GM (1983) Explicit equations for the stresses beneath a sliding spherical contact. Proc Inst Mech Eng Part C 197:53–59. doi:10.1243/PIME_PROC_1983_197_076_02

    Article  Google Scholar 

  40. Hamilton GM (1983) Errata—Explicit equations for the stresses beneath a sliding spherical contact. Proc Inst Mech Eng Part C 197:282

    Article  Google Scholar 

  41. Argibay N, Prasad SV, Goeke RS et al (2013) Wear resistant electrically conductive Au–ZnO nanocomposite coatings synthesized by e-beam evaporation. Wear 302:955–962. doi:10.1016/j.wear.2013.01.049

    Article  Google Scholar 

  42. Wolff K, Liu Z, Braun D et al (2016) Chronology of the microstructure evolution for pearlitic steel under unidirectional tribological loading. Tribol Int 102:540–545. doi:10.1016/j.triboint.2016.06.016

    Article  Google Scholar 

  43. Wu HH, Trinkle DR (2009) Cu/Ag EAM potential optimized for heteroepitaxial diffusion from ab initio data. Comput Mater Sci 47:577–583. doi:10.1016/j.commatsci.2009.09.026

    Article  Google Scholar 

  44. Lyman T (ed) (1973) Metals handbook: metallography, structures and phase diagrams, vol 8. ASM, Materials Park

  45. Brukman MJ, Marco GO, Dunbar TD et al (2006) Nanotribological properties of alkanephosphonic acid self-assembled monolayers on aluminum oxide: effects of fluorination and substrate crystallinity. Langmuir 22:3988–3998. doi:10.1021/la052847k

    Article  Google Scholar 

  46. Chandross M, Lorenz CD, Stevens MJ, Grest GS (2008) Simulations of nanotribology with realistic probe tip models. Langmuir 24:1240–1246. doi:10.1021/la702323y

    Article  Google Scholar 

  47. Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69:1–10. doi:10.1103/PhysRevB.69.144113

    Google Scholar 

  48. Nes E, Ryum N, Hunderi O (1985) On the Zener drag. Acta Metall 33:11–22

    Article  Google Scholar 

  49. Michels A, Krill C, Ehrhardt H et al (1999) Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater 47:2143–2152

    Article  Google Scholar 

  50. Derby B (1992) Dynamic recrystallisation: the steady state grain size. Scr Metall Mater 27:1581–1585. doi:10.1016/0956-716X(92)90148-8

    Article  Google Scholar 

  51. Van Swygenhoven H, Derlet PM, Frøseth AG (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3:399–403. doi:10.1038/nmat1136

    Article  Google Scholar 

  52. Frøseth AG, Derlet PM, Van Swygenhoven H (2004) Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance. Acta Mater 52:5863–5870. doi:10.1016/j.actamat.2004.09.001

    Article  Google Scholar 

  53. Sawyer WG, Argibay N, Burris DL, Krick BA (2014) Mechanistic studies in friction and wear of bulk materials. Annu Rev Mater Res 44:395–427. doi:10.1146/annurev-matsci-070813-113533

    Article  Google Scholar 

  54. Dao M, Lu L, Asaro RJ et al (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065. doi:10.1016/j.actamat.2007.01.038

    Article  Google Scholar 

  55. Trelewicz JR, Schuh CA (2007) The Hall-Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater 55:5948–5958. doi:10.1016/j.actamat.2007.07.020

    Article  Google Scholar 

  56. Asaro RJ, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3382. doi:10.1016/j.actamat.2005.03.047

    Article  Google Scholar 

  57. Cabrera N, Mott NF (1947) Theory of the oxidation of metals. Rep Prog Phys 12:163–184

    Article  Google Scholar 

  58. Huang F, Tao NR (2011) Effects of strain rate and deformation temperature on microstructures and hardness in plastically deformed pure aluminum. J Mater Sci Technol 27:1–7. doi:10.1016/S1005-0302(11)60017-0

    Article  Google Scholar 

  59. Argibay N, Mogonye JE, Michael JR et al (2015) On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films. J Appl Phys 117:1–13. doi:10.1063/1.4915922

    Article  Google Scholar 

  60. Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954. doi:10.1126/science.1224737

    Article  Google Scholar 

  61. Weertman JR (2012) Retaining the nano in nanocrystalline alloys. Science 337:921–922. doi:10.1126/science.1226724

    Article  Google Scholar 

  62. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295:300–319

    Article  Google Scholar 

  63. Pastewka L, Robbins MO (2014) Contact between rough surfaces and a criterion for macroscopic adhesion. Proc Natl Acad Sci USA 111:3298–3303. doi:10.1073/pnas.1320846111

    Article  Google Scholar 

  64. Curry JF, Babuska TF, Lu P, et al Low friction of pure metals in the inverse Hall-Petch Regime (submitted)

  65. Haslam AJ, Moldovan D, Yamakov V et al (2003) Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater 51:2097–2112. doi:10.1016/S1359-6454(03)00011-9

    Article  Google Scholar 

  66. Dillamore IL, Smallman RE, Roberts WT (1964) A determination of the stacking-fault energy of some pure F.C.C. metals. Philos Mag 9:517–526

    Article  Google Scholar 

  67. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Greg Sawyer (U. Florida) for providing insightful critique of the proposed model and its presentation, Stephen Foiles (SNL) for enlightening discussions on determination of grain boundary and stacking fault energies via simulations and comparison with experimental values, Michael Dugger (SNL) and Somuri Prasad (SNL) for numerous helpful discussions about historical research connecting tribological behavior with microstructure and surface composition, Tim Furnish (SNL) for helpful comments about the stacking fault energy of alloys, Paul Kotula (SNL) for acquisition of STEM images, and Brendan Nation (SNL) for assistance with design of experiments and the acquisition of friction and wear data. The authors also acknowledge helpful discussions with Jorge Argibay about time-dependent multi-variate analysis. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chandross.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

N. Argibay and M. Chandross contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argibay, N., Chandross, M., Cheng, S. et al. Linking microstructural evolution and macro-scale friction behavior in metals. J Mater Sci 52, 2780–2799 (2017). https://doi.org/10.1007/s10853-016-0569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0569-1

Keywords

Navigation