Skip to main content
Log in

Composition, structure, and morphology of the surface of nanodimensional platinum-containing films obtained from sols

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This work is aimed at studying the composition, structure, and morphology of the surface of nanodimensional platinum-containing silica films synthesized according to the sol–gel technology. An analysis of the data of optical and atomic-force microscopy, X-ray reflectometry, and the method of the Rutherford backscattering made it possible to reveal the regularities of the effect of the synthesis conditions such as the concentration of the initial reagents, duration of sol ripening, and temperature of treatment on the structure and composition of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, S., Wasmus, R.F., and Savinell, J., Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymerelectrolyte fuel cell: A real-time mass spectrometry study, J. Electrochem. Soc., 1995, vol. 142, no. 12, pp. 4218–4224.

    Article  Google Scholar 

  2. He, C., Kunz, H.R., and Fenton, J.M., Evaluation of platinum-based catalysts for methanol electro-oxidation in phosphoric acid electrolyte, J. Electrochem. Soc., 1997, vol. 144, no. 3, pp. 970–979.

    Article  Google Scholar 

  3. Nonaka, H. and Matsumura, Y., Electrochemical oxidation of carbon monoxide, methanol, formic acid, ethanol, and acetic acid on a platinum electrode under hot aqueous conditions, J. Electroanal. Chem., 2002, vol. 520, nos. 1–2, pp. 101–110.

    Article  Google Scholar 

  4. Corrigan, V. and Weaver, M.J., Mechanisms of formic acid, methanol, and carbon monoxide electrooxidation at platinum as examined by single potential alteration infrared spectroscopy, J. Electroanal. Chem., 1988, vol. 241, nos. 1–2, pp. 143–162.

    Article  Google Scholar 

  5. Venancio, E.C., Napporn, W.T., and Motheo, A.J., Electro-oxidation of glycerol on platinum dispersed in polyaniline matrices, Electrochim. Acta, 2002, vol. 47, no. 9, pp. 1495–1501.

    Article  Google Scholar 

  6. Selvaraj, V., Alagar, M., and Hamerton, I., Electrocatalytic properties of monometallic and bimetallic nanoparticles-incorporated polypyrrole films for electrooxidation of methanol, J. Power Sources, 2006, vol. 160, no. 2, pp. 940–948.

    Article  Google Scholar 

  7. Düdükcü, M., Beytarolu, A., Yilmaz, N., and Köleli, F., Characterization of stainless steel electrode modified by a thin film of polyaniline containing Pt particles and its electrocatalytic activity for methanol oxidation, Russ. J. Electrochem., 2011, vol. 47, no. 8, pp. 959–964.

    Article  Google Scholar 

  8. Ruiz, D.P., Fierro, J.-L.G., and Reyes, P.A., Enantioselective hydrogenation of ethyl pyruvate and 1-phenyl-1,2-propanedione on catalysts prepared by impregnation of colloidal platinum on SiO2, J. Braz. Chem. Soc., 2010, vol. 21, no. 2, pp. 262–269.

    Article  Google Scholar 

  9. Ito, T., Kaneko, S., Kunimatsu, M., Hirabayashi, Y., Soga, M., and Suzuki, K., Electrochemical response of platinum ultrathin layer formed by pulsed laser deposition, Int. J. Electrochem., 2011, vol. 2011, no. 12, pp. 1–6.

    Article  Google Scholar 

  10. Cillessen, J.F.M., Wolf, R.M., and de Leeuw, D.M., Pulsed laser deposition of heteroepitaxial thin Pt films on MgO (100), Thin Solid Films, 1993, vol. 226, no. 1, pp. 53–58.

    Article  Google Scholar 

  11. Sheng, J., Shivalingappa, L., Karasawa, J., and Fukami, T., Low-temperature formation of photocatalytic Pt-anatase film by magnetron sputtering, J. Mater. Sci., 1999, vol. 34, no. 24, pp. 6201–6206.

    Article  Google Scholar 

  12. Gorokhov, M.V., Nanostructures of metals and metalpolymer composites prepared by electrohydrodynamic dispersion, Extended Abstract of Cand. Sci. Dissertation, St. Petersburg, 2011.

    Google Scholar 

  13. Wrbanek, J.D. and Laster, K.L.H., Preparation and analysis of platinum thin films for high-temperature sensor applications, NASA/TM-2005-213433, 2005.

    Google Scholar 

  14. Shilova, O.A., Silicate nanosized films prepared by the sol–gel method for use in planar technology for fabricating semiconductor gas sensors, Glass Phys. Chem., 2005, vol. 31, no. 2, pp. 201–218.

    Article  Google Scholar 

  15. Ueno, A., in Handbook of Sol–Gel Science and Technology: Processing, Characterization, and Applications, Sumio Sakka, Ed., New York: Springer-Verlag, 2005, vol. 3.

  16. Shilova, O.A., Synthesis and structure features of composite silicate and hybrid TEOS-derived thin films doped by inorganic and organic additives, J. Sol–Gel Sci. Technol., 2013, vol. 68, no. 3, pp. 387–410.

    Article  Google Scholar 

  17. Shilova, O.A., Chepik, L.F., and Bubnov, Yu.Z., Properties of films prepared from the solutions based on tetraethoxysilane, depending on the technological aspects of their formation, Zh. Prikl. Khim. (S.-Peterburg), 1995, vol. 68, no. 10, pp. 1608–1612.

    Google Scholar 

  18. Petrova, I.V., Kovalenko, D.L., Shilova, O.A., and Bubnov, Yu.Z., Development of the sol–gel technology for the preparation of nano-structured thin films for metal-oxide gas sensors, in Functional Nanomaterials and High-Purity Substances (Special Issue), Perspekt. Mater., 2011, no. 11, pp. 342–349.

    Google Scholar 

  19. Gracheva, I.E., Moshnikov, V.A., and Gareev, K.G., A Study of magnetic film nanocomposites and powders of xerogels synthesized by the sol–gel method, Glass Phys. Chem., 2013, vol. 39, no. 3, pp. 311–319.

    Article  Google Scholar 

  20. Kononova, I.E., Moshnikov, V.A., Krishtab, M.B., and Pronin, I.A., Fractally aggregated microand nanosystems synthesized from sols, Glass Phys. Chem., 2014, vol. 40, no. 2, pp. 190–202.

    Article  Google Scholar 

  21. Ponomareva, A.A., Moshnikov, V.A., Maslova, O.A., Yuzyuk, Yu.I., and Suchaneck, G., Effect of thermal annealing on the surface of sol–gel prepared oxide film studied by atomic force microscopy and Raman spectroscopy, Glass Phys. Chem., 2014, vol. 40, no. 1, pp. 99–105.

    Article  Google Scholar 

  22. Shilova, O.A., Shilov, V.V., Koshel’, N.D., and Kozlova, E.V., Formation of catalytic layers from tetraethoxysilane-based sols for use in polymer fuel cells, Glass Phys. Chem., 2004, vol. 30, no. 1, pp. 98–100.

    Article  Google Scholar 

  23. Moshnikov, V.A., Tairov, Yu.M., Khamova, T.V., and Shilova, O.A., in Zol’–gel’ tekhnologiya mikroi nanokompozitov: uchebnoe posobie (The Sol–Gel Technology of Microand Nanocomposites: A Textbook), Shilova, O.A., Ed., St. Petersburg: Lan’, 2013.

  24. Kanunnikova, O.M., Mikhailova, S.S., Murav’eva, A.E., Goncharov, O.Yu., Shilova, O.A., and Bubnov, Yu.Z., Specific features of the structure of sol–gel silicate films doped with Mn and Pt, Glass Phys. Chem., 2006, vol. 32, no. 2, pp. 228–233.

    Article  Google Scholar 

  25. Kanunnikova, O.M., Murav’ev, A.E., Mikhailova, S.S., Shilova, O.A., and Bubnov, Yu.Z., Influence of the preparation conditions on the composition and structure of the sol–gel silicate films doped with platinum, Khim. Fiz. Mezoskopiya, 2006, no. 4, pp. 421–440.

    Google Scholar 

  26. Appen, A.A., Khimiya stekla (The Chemistry of Glass), Leningrad: Khimiya, 1974.

    Google Scholar 

  27. Daillant, J. and Gibaud, A., X-ray and Neutron Reflectivity: Principles and Applications, Berlin: Springer-Verlag, 1999.

    Google Scholar 

  28. Spravochnik khimika, tom 2: Osnovnye svoistva neorganicheskikh i organicheskikh soedinenii (A Handbook of Chemist: Volume 2. Basic Properties of Inorganic and Organic Compounds), Nikol’skii, B.P., Grigorov, O.N., Pozin, M.E., et al., Eds., Leningrad: Khimiya, 1964.

    Google Scholar 

  29. Spravochnik khimika, tom 5: Syr’e i produkty promyshlennosti neorganicheskikh veshchestv, protsessy i apparaty, korroziya, gal’vanotekhnika, khimicheskie istochniki toka (A Handbook of Chemist: Volume 5. Raw Materials and Products of Industry of Inorganic Substances, Processes and Devices, Corrosion, Galvanic Technology, and Chemical Sources of Electricity), Nikol’skii, B.P., Grigorov, O.N., Pozin, M.E., et al., Eds., Leningrad: Khimiya, 1966.

    Google Scholar 

  30. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, London: Academic, 1982. Translated under the title Adsorbtsiya, udel’naya poverkhnost’, poristost’, Moscow: Mir, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Shilova.

Additional information

Original Russian Text © O.A. Shilova, N.N. Gubanova, V.A. Matveev, V.Yu. Bayramukov, A.P. Kobzev, 2016, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilova, O.A., Gubanova, N.N., Matveev, V.A. et al. Composition, structure, and morphology of the surface of nanodimensional platinum-containing films obtained from sols. Glass Phys Chem 42, 78–86 (2016). https://doi.org/10.1134/S1087659616010168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659616010168

Keywords

Navigation