Skip to main content
Log in

172Hf → 172Lu Radionuclide Generator Based on a Reverse-Tandem Separation Scheme

  • Published:
Radiochemistry Aims and scope

Abstract

The distribution coefficients of Hf(IV) and Lu(III) between Dowex 50W×8 cation exchanger or Dowex 1×8 anion exchanger and mixed HCl–H2C2O4 solutions and between Dowex 50W×8 cation exchanger or Dowex 1×8 anion exchanger and citric acid solutions were determined. A number of modifications of the 172Hf → 172Lu generator, based on reverse separation schemes, were examined. Systems consisting of an anion-exchange resin and a solution of appropriate organic acid were taken as a chemical basis of the generator. Irreversible sorption of 172Lu in generator columns was studied. The optimum operation mode of the 172Hf → 172Lu generator based on the reverse-tandem scheme with periodic transfer of the parent radionuclide into the liquid phase was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Valentini, R. and Vianden, R., Hyperfine Interact., 2010, vol. 197, pp. 149–153.

    Article  CAS  Google Scholar 

  2. Krolas, K., Rams, M., Forget, A., and Wojtkowska, J., Hyperfine Interact., 1999, vols. 120/121, pp. 223–231.

    Article  Google Scholar 

  3. Kwekkeboom, D.J., Teunissen, J.J., Bakker, W.H., et al., J. Clin. Oncol., 2005, vol. 23, pp. 2754–2762.

    Article  CAS  PubMed  Google Scholar 

  4. Ilan, E., Sandstrom, M., Wassberg, C., et al., J. Nucl. Med., 2015, vol. 56, pp. 177–182.

    Article  CAS  PubMed  Google Scholar 

  5. Sabongi, J., Gonsalves, M., Alves, C., et al., Exp. Ther. Med., 2016, vol. 12, pp. 3078–3082.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dash, A., Pillai, M.R.A., and Knapp, F.F., Nucl. Med. Mol. Imag., 2015, vol. 49, pp. 85–107.

    Article  CAS  Google Scholar 

  7. Levedev, N., Hermann, E., and Ehn, K., Radiokhimiya, 1984, vol. 26, p. 223.

    Google Scholar 

  8. Grant, P.M., Daniels, R.J., Daniels, W.J., et al., J. Radioanal. Chem., 1983, vol. 76, pp. 319–323.

    Article  CAS  Google Scholar 

  9. Grant, P.M., in Nuclear Methods in Environmental and Energy Research: Proc. Fifth Int. Conf., 1984.

    Google Scholar 

  10. Filosofov, D.V., Loktionova, N.S., and Rösch, F., Radiochim. Acta, 2010, vol. 98, pp. 149–156.

    Article  CAS  Google Scholar 

  11. Guseva, L.I. and Dogadkin, N.N., Radiochemistry, 2009, vol. 51, no. 2, pp. 169–174.

    Article  CAS  Google Scholar 

  12. Karamian, S.A., Adam, J., Filossofov, D.V., et al., Nucl. Instr. Meth. Phys. Res. A, 2002, vol. 489, pp. 448–468.

    Article  CAS  Google Scholar 

  13. Tüng, D.K., Lebedev, N.A., Mai, N.G., et al., Radiokhimiya, 1984, vol. 26, pp. 210–218.

    Google Scholar 

  14. Reus, U. and Westmeier, W., At. Data Nucl. Tables, 1983, vol. 29, p. 192.

    Article  Google Scholar 

  15. Firestone, R.B., Table of Isotopes, Wiley, 1996, 8th ed.

    Google Scholar 

  16. Purcell, E.M., Torrey, H.C., and Pound, R.V., Phys. Rev., 1946, vol. 69, pp. 37–38.

    Article  CAS  Google Scholar 

  17. Jumas, J.C., Robert, F., Aldon, L., et al., J. Optoelectron. Adv. Mater., 2005, vol. 7, pp. 177–184.

    CAS  Google Scholar 

  18. Adloff, J.P., Radiochim. Acta, 1978, vol. 25, pp. 57–74.

    Article  CAS  Google Scholar 

  19. Abragam, A. and Pound, R.V., Phys Rev., 1953, vol. 92, pp. 943–962.

    Article  CAS  Google Scholar 

  20. Nédélec, R. and Vianden, R., Hyperfine Interact., 2009, vol. 192, pp. 109–115.

    Article  CAS  Google Scholar 

  21. Brudanin, V.B., Filossofov, D.V., Kochetov, O.I., et al., Nucl. Instr. Meth. Phys. Res. A, 2005, vol. 547, pp. 389–399.

    Article  CAS  Google Scholar 

  22. Marhol, M., Ion Exchangers in Analytical Chemistry, Prague: Academia, 1982.

    Google Scholar 

  23. Nervik, W.E. and Stevenson, P.C., The Radiochemistry of the Rare Earths, Scandium, Yttrium, and Actinium, Washington: National Acad. Sci., 1961.

    Google Scholar 

  24. Kumok, V.N., Kuleshova, O.M., and Karabin, L.A., Proizvedeniya rastvorimosti (Solubility Products), Novosibirsk: Nauka, 1983.

    Google Scholar 

  25. Serebrennikov, V.V., Khimiya redkozemel’nykh elementov (skandii, ittrii, lantanidy) (Chemistry of Rare Earth Elements (Scandium, Yttrium, Lanthanides)), Tomsk: Tomskii Univ., 1961, vol. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Dadakhanov.

Additional information

Original Russian Text © J.A. Dadakhanov, N.A. Lebedev, A.I. Velichkov, D.V. Karaivanov, A.E. Baimukhanova, N.T. Temerbulatova, D.V. Filosofov, 2018, published in Radiokhimiya, 2018, Vol. 60, No. 4, pp. 356–366.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadakhanov, J.A., Lebedev, N.A., Velichkov, A.I. et al. 172Hf → 172Lu Radionuclide Generator Based on a Reverse-Tandem Separation Scheme. Radiochemistry 60, 415–426 (2018). https://doi.org/10.1134/S1066362218040112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362218040112

Keywords

Navigation