Skip to main content
Log in

Abundance, diversity, viability, and factorial ecology of fungi in peatbogs

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

This review presents an analysis of the results of mycological investigations of peat obtained by the authors and other Russian and foreign scientists. High-moor peat, unlike low-moor peat, is shown to contain great reserves of fungal biomass mainly represented by mycelium. The viability of the mycelium and spores is high in the upper peat horizons and does not exceed 50% in the lower ones. In high-moor peat, fungi that are capable of destroying the complex structural polymers composing up to 50% of the peat rarely occur. The analysis of the factors limiting the activity of fungi in the high-moor peatbogs showed that, in the upper layers, the main factor was the strength of the sphagnum cellular walls. In the lower layers, the significant oxygen deficit and the accumulation of sphagnans, sphagnols, phenol-containing compounds, and antioxidants that block the activity of hydrolytic and oxidizing enzymes are of great importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Babeshina, Extended Abstract of Candidate’s Dissertation in Biology (Tomsk, 2002).

  2. N. N. Bambalov, “Analysis of Biological Factors of the Organic Matter Decomposition in Mires,” in Mires and the Biosphere (Materials of the Fifth Scientific School Session) (TsNTI, Tomsk, 2006), pp. 18–27 [in Russian].

    Google Scholar 

  3. V. K. Bakhnov, Biogeochemical Aspects of Bog-Forming Process (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  4. V. K. Bakhnov, “Biogeochemistry of Bog Pedogenesis,” in Mires and the Biosphere (Materials of the Fifth Scientific School Session) (TsNTI, Tomsk, 2006), pp. 8–18 [in Russian].

    Google Scholar 

  5. S. E. Vomperskii, Biological Foundations of Drainage Efficiency (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  6. N. I. Gantimurova, “Microflora of Peat Bog Soils,” in Microflora of West Siberian Soils (Nauka, Novosibirsk, 1970), pp. 148–170 [in Russian].

    Google Scholar 

  7. A. V. Golovchenko, O. Yu. Bogdanova, and T. V. Glukhova, “Viability of Fungal Mycelium in Peatlands,” in West Siberian Peatlands and the Carbon Cycle: Past and Present (Materials III Intern. Field Symp. in Khanty-Mansiisk) (Novosibirsk, 2011), p. 10 [in Russian].

  8. A. V. Golovchenko, O. Yu. Bogdanova, A. L. Stepanov, L. M. Polyanskaya, D. G. Zvyagintsev, “Functioning of Microbial Complexes in Aerated Layers of a Highmoor Peat Bog,” Eur. Soil Sci. 43(9), 1022–1029 (2010).

    Article  Google Scholar 

  9. A. V. Golovchenko and E. M. Volkova, “Population Density, Reserves, and Structure of Microbial Complexes in Low-Moor Peatlands of Tula Oblast,” in Mires and the Biosphere (Materials of the Fifth Scientific School Session) (TsNTI, Tomsk, 2006), pp. 158–162 [in Russian].

    Google Scholar 

  10. A. V. Golovchenko and N. G. Dobrovol’skaya, “Population Density and the Reserves of Microorganisms in Flood-Plain Soils of the Protva River,” Eur. Soil Sci. 34(12), 1300–1304 (2001).

    Google Scholar 

  11. A. V. Golovchenko, N. G. Dobrovol’skaya, and L. I. Inisheva, “Structure and Stocks of Microbial Biomass in Oligotrophic Peat Bogs of the Southern Taiga in Western Siberia,” Eur. Soil Sci. 35(12), 1296–1301 (2002).

    Google Scholar 

  12. A. V. Golovchenko, T. G. Dobrovol’skaya, L. K. Alekhina, et al., “Structure and Functions of Microbial Communities of Soils Related to the Decomposition of Organic Matter in Forest Ecosystems,” in Regulatory Role of Soils in the Functioning of Taiga Ecosystems (Nauka, Moscow, 2002), pp. 274–312 [in Russian].

    Google Scholar 

  13. A. V. Golovchenko, T. G. Dobrovol’skaya, and D. G. Zvyagintsev, “Mikrobiological Foundations of the Assessment of Peatlands as Natural Bodies,” Vestn. Tomsk. Gos. Pedagog. Univ., Ser. Biol., 78(4), 45–63 (2008).

    Google Scholar 

  14. A. V. Golovchenko, T. G. Dobrovol’skaya, O. S. Kukharenko, T. A. Semenova, O. Yu. Bogdanova, D. G. Zvyagintsev, “The Effects of Aeration and Temperature on the Structure and Functioning of Microbial Complexes in a High-Moor Peatland,” in Mires and the Biosphere (Materials of the Seventh Scientific School Session) (Izd. TGPU, Tomsk, 2010), pp. 36–41 [in Russian].

    Google Scholar 

  15. A. V. Golovchenko, T. G. Dobrovol’skaya, I. A. Maksimova, V. A. Terekhova, D. G. Zvyagintsev, S. Ya. Trofimov, “Structure and Role of Microbial Communities in Southern Taiga Soils,” Microbiology 69(4), 371–380 (2000).

    Article  Google Scholar 

  16. A. V. Golovchenko and L. M. Polyanskaya, “Viability of Fungal Mycelium and Spores in Peatlands,” in Mires and Boggy Forests in Light of Sustainable Nature Management (GEOS, Moscow, 1999), pp. 106–109 [in Russian].

    Google Scholar 

  17. A. V. Golovchenko, L. M. Polyanskaya, T. G. Dobrovol’skaya, L. V. Vasil’eva, I. Yu. Chernov, D. G. Zvyagintsev, “Specific Features of the Spatial Distribution and Structure of Microbial Complexes in Boggy Forest Ecosystems,” Pochvovedenie, No. 10, 78–89 (1993).

  18. A. V. Golovchenko, T. A. Semenova, A. V. Polyakova, and L. I. Inisheva, “The Structure of the Micromycete Complexes of Oligotrophic Peat Deposits in the Southern Taiga Subzone of West Siberia,” Microbiology 71(5), 575–581 (2002).

    Article  Google Scholar 

  19. A. V. Golovchenko, E. Yu. Tikhonova, and D. G. Zvyagintsev, “Abundance, Biomass, Structure, and Activity of the Microbial Complexes of Minerotrophic and Ombrotrophic Peatlands,” Microbiology 76(5), 630–637 (2007).

    Article  Google Scholar 

  20. A. V. Golovchenko, I. Yu. Chernov, and T. A. Semenova, “Saprotrophic Microbial Complex of Oligotrophic Peatlands in West Siberia,” in Soils and Biodiversity (Tr. Inst. Pochvoved. MGU-RAN, No. 4, 144–159) (2004) [in Russian]

  21. T. G. Dobrovol’skaya, A. V. Golovchenko, O. S. Kukharenko, A. V. Yakushev, T. A. Semenova, L. I. Inisheva, “The Structure of the Microbial Communities in Low-Moor and High-Moor Peat Bogs of Tomsk Oblast,” Eur. Soil Sci. 45(3), 273–281 (2012).

    Article  Google Scholar 

  22. V. N. Efimov, Peat Soils and Their Fertility (Agropromizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  23. E. N. Zhdannikova, “Microbiological Characterization of Peat Bog Soils in Tomsk Oblast,” in Boggy Forests and Mires of Siberia (Izd. Akad. Nauk SSSR, Moscow, 1963), pp. 170–182 [in Russian].

    Google Scholar 

  24. G. A. Zavarzin, Lectures on the Environmental Microbiology (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  25. L. M. Zagural’skaya, Microbial Transformation of Organic Matter in Forest Soils of Karelia (Nauka, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  26. A. A. Zvereva, N. V. Yudina, O. V. Serebrennikova, and L. I. Inisheva, “Specificity of the Composition of Lipids in Oligotrophic Peat,” in New Ideas in Geology and Geochemistry of Oil and Gas (Materials of the Fifth Intern. Conf.) (Izd. Mosk. Gos. Univ., Moscow, 2000), Vol. 2, pp. 148–151 [in Russian].

    Google Scholar 

  27. T. G. Zimenko, Microbial Cenoses of Peat Soils and Their Functioning (Nauka i Tekhnika, Minsk, 1983) [in Russian].

    Google Scholar 

  28. A. V. Kachalkin, I. Yu. Chernov, T. A. Semenova, and A. V. Golovchenko, “Characterization of the Taxonomic Composition of Micromycetal and Yeast Communities in Peat Soils of Different Geneses,” in Mires and the Biosphere (Materials of the Fourth Scientific School Session) (TsNTI, Tomsk, 2005), pp. 208–216 [in Russian].

    Google Scholar 

  29. I. Yu. Kirtsideli, “Changes in the Complexes of Micromycetes upon Changes in Soil Conditions in the Area of Lake Levinson-Lessing, the Taimyr Peninsula,” Mikol. Fitopatol. 33(3), 179–187 (1999).

    Google Scholar 

  30. I. Yu. Kirtsideli and B. A. Tomilin, “Soil Micromycetes of the Severnaya Zemlya Archipelago,” Mikol. Fitopatol. 31(6), 1–6 (1997).

    Google Scholar 

  31. L. S. Kozlovskaya, Role of Soil Invertebrates in the Transformation of Organic Matter in Bog Soils (Nauka, Leningrad, 1976) [in Russian].

    Google Scholar 

  32. G. A. Kochkina, N. E. Ivanushkina, S. G. Karasev, E. Yu. Gavrish, L. V. Gurina, L. I. Evtushenko, E. V. Spirina, E. A. Vorob’eva, D. A. Gilichinskii, S. M. Ozerskaya, “Survival of Micromycetes and Actinobacteria under Conditions of Long-Term Natural Cryopreservation,” Microbiology 70(3), 356–364 (2001).

    Article  Google Scholar 

  33. A. V. Kurakov, R. B. Lavrent’ev, T. Yu. Nechitailo, P. N. Golyshin, D. G. Zvyagintsev, “Diversity of Facultatively Anaerobic Microscopic Mycelial Fungi in Soils,” Microbiology 77(1), 90–98 (2008).

    Article  Google Scholar 

  34. A. V. Kurakov, K. S. Khidirov, V. S. Sadykova, and D. G. Zvyagintsev, “Anaerobic Growth Capacity and Alcoholic Fermentation Activity of Microscopic Fungi.” Prikl. Biokhim. Mikrobiol. 47(2), 187–192 (2011).

    Google Scholar 

  35. S. G. Maslov and V. S. Arkhipov, “Chemical Composition of Peat and the Ways of Its Application,” in Mires and the Biosphere (Materials of the Fourth Scientific School Session) (TsNTI, Tomsk, 2005), pp. 83–89 [in Russian].

    Google Scholar 

  36. Methods of Soil Microbiology and Biochemistry (Izd. Mosk. Gos. Univ., Moscow, 1991), [in Russian].

  37. T. G. Mirchink, Soil Mycology (Izd. Mosk. Gos. Univ., Moscow, 1988) [in Russian].

    Google Scholar 

  38. M. Kh. Orazova, A. V. Golovchenko, and T. A. Semenova, “Micromycetal Complex of Low-Moor High-Ash Peatland,” in Prospects of Soil Biology (MAKS Press, Ìoscow, 2001), pp. 266–272 [in Russian].

    Google Scholar 

  39. N. S. Pavlova, T. G. Dobrovol’skaya, and A. V. Kurakov, “Antagonistic Interactions of Bacteria and Microscopic Fungi in a High-Moor Peatland,” in West Siberian Peatlands and the Carbon Cycle: Past and Present (Materials III Intern. Field Symp. in Khanty-Mansiisk) (Novosibirsk, 2011), p. 60 [in Russian].

  40. O. M. Parinkina, Microflora of Tundra Soils (Nauka, Leningrad, 1989) [in Russian].

    Google Scholar 

  41. L. M. Polyanskaya, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 1996).

  42. L. M. Polyanskaya, A. V. Golovchenko, and D. G. Zvyagintsev, “Determination of the Viability of Fungal Spores and Mycelium in Soil,” Microbiology 67(6), 692–695 (1998).

    Google Scholar 

  43. A. A. Sirin, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 1999).

  44. A. V. Smagin, Gaseous Phase of Soils (Izd. Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  45. A. V. Smagin, “Soil-Hydrophysical Support of the Study of Gas Functions of West Siberian Mires in Relation to the Problem of Greenhouse Effect,” Ekolog. Vestn. Sev. Kavkaza 3(3), 46–58 (2007).

    Google Scholar 

  46. M. V. Smagina, Microorganisms and Ecological Specificity of the Organic Matter Transformation in Drained Boggy Forests, Cand. Sci. (Biol.) Diss. (Krasnoyarsk, 1988) [in Russian].

  47. Yu. A. Kharanzhevskaya, “Water-Physical Properties and Hydrothermic Regime of an Oligotrophic Mire,” in Mires and the Biosphere (Materials of the Fifth Scientific School Session) (TsNTI, Tomsk, 2006), pp. 271–277 [in Russian].

    Google Scholar 

  48. R. Aerts, J. T. A. Verhoeven, and D. F. Whigham, “Plant-Mediated Controls on Nutrient Cycling in Temperate Fens and Bogs,” Ecology 80(7), 2170–2181 (1999).

    Article  Google Scholar 

  49. H. M. Appel, “Phenolics in Ecological Interactions: the Importance of Oxidation,” J. Chem. Ecol. 19, 1521–1552 (1993).

    Article  Google Scholar 

  50. S. Ballance, K. Y. Borsheim, K. Inngjerdingen, Bs. Paulsen, and B. E. Christensen, “Partial Characterization and Reexamination of Polysaccharides Released by Mild Acid Hydrolysis from the Chlorite-Treated Leaves of Sphagnum papillosum,” Carbohyd. Polym. 67, 104–115 (2007).

    Article  Google Scholar 

  51. S. Ballance, K. A. Kristiansen, J. Holt, and B. E. Christensen, “Interactions of Polysaccharides Extracted by Mild Acid Hydrolysis from the Leaves of Sphagnum papillosum with Either Phenylhydrazine, 0-Phenylenediamine and Its Oxidation Products Or Collagen,” Carbohydr. Polymers 71, 550–558 (2008).

    Article  Google Scholar 

  52. G. D. Bending and D. J. Read, “Lignin and Soluble Phenolic Degradation by Ectomycorrhizal and Ericoid Mycorrhizal Fungi,” Mycol. Res. 101, 1348–1354 (1997).

    Article  Google Scholar 

  53. A. E. Bohlin and M. Hamalainen, “Multivariate Evaluation of the Significance of Quantitative Botanical Analysis in Peat 194 Characterization,” Proc. VIII Intern. Peat Congress (Leningrad, 1988), pp. 211–222.

  54. L. Bragazza, C. Freeman, T. Jones, et al., “Atmospheric Nitrogen Deposition Promotes Carbon Loss from Peat Bogs,” Proc. Natl. Acad. Sci. USA 51, 19386–19389 (2006).

    Article  Google Scholar 

  55. A. Burges and E. Fenton, “The Effect of Carbon Dioxide on the Growth of Certain Soil Fungi,” Trans. Brit. Mycol. Soc. 36, 104–108 (1953).

    Article  Google Scholar 

  56. P. D. Coley, J. P. Bryant, and F. S. Chapin, “Resource Availability and Plant Anti-Herbivore Defense,” Science 230, 895–899 (1985).

    Article  Google Scholar 

  57. T. Daufresne and M. Loreau, “Ecological Stoichiometry, Primary Producer-Decomposer Interactions, and Ecosystem Persistence,” Ecology 82, 3069–3082 (2001).

    Google Scholar 

  58. K. H. Domsch, W. Gams, and T. Anderson, Compendium of Soil Fungi, Vol. 1 (IHW-Verlag, 1993).

  59. A. Dunberg, E. Bohlin, P. Geladi, and C. Albano, “Automated Identification of Peat Components by Means of Microspectrophotometry,” Intern. Peat J. 2, 1–17 (1987).

    Google Scholar 

  60. D. M. Durall, A. W. Todd, and J. M. Trappe, “Decomposition of 14C-Labelled Substrates by Ectomycorrhizal Fungi in Association with Douglas-Fir,” New Phytol. 127, 353–358 (1994).

    Google Scholar 

  61. A. Ekblad and A. Nordgren, “Is Growth of Soil Microorganisms in Boreal Forests Limited by Nitrogen Availability?,” Plant Soil 242, 115–122 (2002).

    Article  Google Scholar 

  62. N. Fennera, C. Freeman, and B. Reynoldsb, “Hydrological Effects on the Diversity of Phenolic Degrading Bacteria in a Peatland: Implications for Carbon Cycling,” Soil Biol. Biochem. 37, 1277–1287 (2005).

    Article  Google Scholar 

  63. C. Freeman, N. J. Ostle, N. Fenner, and H. Kang, “A Regulator Role for Phenol Oxidase during Decomposition in Peatlands,” Soil Biol. Biochem. 36(10), 1663–1667 (2004).

    Article  Google Scholar 

  64. M. Glagolev, H. Uchiyama, V. Lebedev, M. Utsumi, A. Smagin, O. Glagoleva, V. Erohin, P. Olenev, and A. Nozhevnikova, “Oxidation and Plant-Mediated Transport of Methane in West Siberian Bog,” Proc. of the 8th Symp. on the Joint Siberian Permafrost Studies between Japan and Russia in 1999 (Isebu, Tsukuba, 2000), pp. 143–149.

  65. M. V. Glagolev, A. V. Smagin, V. S. Lebedev, N. A. Shnyrev, and A. N. Nozhevnikova, “Generarion, Mass-Transfer and Transformation of Methane in Peatland (on Example of Bacharskoe Wetland),” in West Siberian Peatlands and Carbon Cycle: Past and Present (Intern. Field Symposium, Noyabrsk, Russia, 2001), pp. 79–81.

    Google Scholar 

  66. T. Hajek, “Habitat and Species Control on Sphagnum Production and Decomposition in a Mountain Raised Bog,” Boreal Environ. Res. 14, 947–958 (2009).

    Google Scholar 

  67. T. Hajek and L. Adamec, “Mineral Nutrient Economy in Competing Species of Sphagnum Mosses,” Ecological Research 24, 291–302 (2009).

    Article  Google Scholar 

  68. T. Hajek, S. Ballance, J. Limpens, M. Zijlstra, J. T. Verhoeven, “Cell-Wall Polysaccharides Play an Important Role in Decay Resistance of Sphagnum and Actively Depressed Decomposition in Vitro,” Biogeochemistry 103, 45–57 (2011).

    Article  Google Scholar 

  69. L. J. Hutchinson, “Studies on the Systematic of Ectomycorrhizal Fungi in Axenic Culture. II. The Enzymatic Degradation of Selected Carbon and Nitrogen Compounds,” Can. J. Bot. 68, 1522–1530 (1990).

    Article  Google Scholar 

  70. K. Jaatinen, R. Laiho, A. Vuorenmaa, U. Castillo, K. Minkkinen, T. Pennanen, T. Pettila, and H. Fritze, “Responses of Aerobic Microbial Communities and Soil Respiration to Water-Level Drawdown in a Northern Boreal Fen,” Environ. Microbiol. 10, 339–353 (2008).

    Article  Google Scholar 

  71. A. A. Khripovich, “Biological Activity of Water-Ethanol Extracts from Peat and Alkaloids Isolated from Them,” Sol. Fuel Chem. 43(3), 150–152 (2009).

    Article  Google Scholar 

  72. E. Kiister, “Microorganismen im Moor,” Telma 16, 235–244 (1986).

    Google Scholar 

  73. K. A. Kristiansen, “Detection and Significance of Nonterminal Carbonyl Groups in Water Soluble Polycaccharides,” (Thesis for Degree of Doctor Ingenior), Norwegian Univ. Sci. Technol. (Trondheim, 2009).

  74. R. Laiho, “Decomposition in Peatlands: Reconciling Seemingly Contrasting Results on the Impacts of Lowered Water Levels,” Soil Biol. Biochem. 38(8), 2011–2024 (2006).

    Article  Google Scholar 

  75. B. J. Macauley and D. M. Griffin, “Effect of Carbon Dioxide and Oxygen on the Activity of Some Soil Fungi,” Trans. Brit. Mycol. Soc. 53, 53–62 (1969).

    Article  Google Scholar 

  76. E. A. D. Mitchell, G. A. Buttler, C. Amblard, P. Grosvernier, and J. M. Gobat, “Structure of Microbial Communities in Sphagnum Peatlands and Effect of Atmospheric Carbon Dioxide Enrichment,” Microb. Ecol. 46, 187–199 (2003).

    Google Scholar 

  77. O. Moore, “The Ecology of Peat-Forming Processes: A Review,” Int. J. Coal Geol. 12, 89–103 (1989).

    Article  Google Scholar 

  78. K. Opelt and G. Berg, “Diversity and Antagonistic Potential of Bacteria Associated with Bryophytes from Nutrient-Poor Habitats of the Baltic Sea Coast,” Appl. Environ. Microbiol. 70, 6569–6579 (2004).

    Article  Google Scholar 

  79. K. Opelt, V. Chobot, F. Hadacek, S. Schonmann, L. Eberl, and G. Berg, “Investigations of the Structure and Function of Bacterial Communities Associated with Sphagnum Mosses,” Environ. Microbiol 9(11), 2795–2809 (2007).

    Article  Google Scholar 

  80. T. J. Painter, “Preservation in Peat (a Polysaccharide in Sphagnum Moss Contains Residues of an Unstable Keto-Uronic Acid Which Could Explain Know Facts),” Chem. Ind. 12, 421–423 (1991).

    Google Scholar 

  81. T. J. Painter and N. A. Sorensen, “The Cation-Exchange of Sphagnum Mosses: An Unusual Form of Holocellulose,” Carbohyd. Res. 66, 1–3 (1978).

    Article  Google Scholar 

  82. S. Rasmussenb, C. Wolffa, and H. Rudolphb, “Compartmentalization of Phenolic Constituents in Sphagnum,” Phytochemistry 38, 35–39 (1995).

    Article  Google Scholar 

  83. A. V. Rice and R. S. Currah, “Oidiodendron maius: Saprobe in Sphagnum Peat, Mutualist in Ericaceous Roots?,” Soil Biol. 9Part I (2006).

  84. H. Rudolph and J. Samland, “Occurrence and Metabolism of Sphagnum Acid in the Cell Walls of Bryophytes,” Phytochemistry 24(4), 745–749 (1985).

    Article  Google Scholar 

  85. K. Salo, “The Composition and Structure of Macrofungus Communities in Boreal Upland Type Forests and Peatlands in North Karelia, Finland,” Karstenia 33, 61–99 (1993).

    Google Scholar 

  86. V. Salonen and V. Saari, “Generic Composition of Macrofungus Communities on Virgin Mire Site Types in Central Finland,” Ann. Botan. Fennici 27, 33–38 (1990).

    Google Scholar 

  87. T. Stalheim, S. Balance, B. E. Christensen, and P. E. Granum, “Sphagnan—a Pectin-Like Polymer Isolated from Sphagnum Moss Can Inhibit the Growth of Some Typical Food Spoilage and Food Poisoning Bacteria by Lowering the pH,” J. Appl. Microbiol. 106(3), 967–976 (2009).

    Article  Google Scholar 

  88. M. N. Thormann, “Diversity and Function of Fungi in Peatlands: A Carbon Cycling Perspective,” Can. J. Microbiol. 86, 281–293 (2006).

    Google Scholar 

  89. M. N. Thormann, “The Role of Fungi in Boreal Peatlands,” Ecol. Stud. 188, 101–123 (2006).

    Article  Google Scholar 

  90. M. N. Thormann, S. E. Bayley, and R. S. Currah, “Microcosm Tests of the Effects of Temperature and Microbial Species Number on the Decomposition of Carex aquatilis and Sphagnum fuscum Litter from Southern Boreal Peatlands,” Can. J. Microbiol. 50, 793–802 (2004).

    Article  Google Scholar 

  91. M. N. Thormann, R. S. Currah, and S. E. Bayley, “Microfungi Isolated from Sphagnum Fuscum from a Southern Boreal Bog in Alberta, Canada,” Bryologist 104, 548–559 (2001).

    Article  Google Scholar 

  92. M. N. Thormann, R. S. Currah, and S. E. Bayley, “Patterns of Distribution of Microfungi in Decomposing Bog and Fen Plants,” Can. J. Botany 82, 710–720 (2004).

    Article  Google Scholar 

  93. M. N. Thormann, R. S. Currah, and S. E. Bayley, “Succession of Microfungal Assemblages in Decomposing Peatland Plants,” Plant & Soil 250, 323–333 (2003).

    Article  Google Scholar 

  94. M. N. Thormann, R. S. Currah, and S. E. Bayley, “The Relative Ability of Fungi from Sphagnum Fuscum to Decompose Selected Carbon Substrates,” Can. J. Microbiol. 48, 204–211 (2002).

    Article  Google Scholar 

  95. M. N. Thormann and A. V. Rice, “Fungi from Peatlands,” Fungal Diversity 24, 241–299 (2007).

    Google Scholar 

  96. A. Tsuneda, M. N. Chen, and R. S. Currah, “Characteristics of a Disease of Sphagnum fuscum Caused by Scleroconidioma sphagnicola,” Can. J. Bot. 79, 1217–1224 (2001).

    Article  Google Scholar 

  97. A. Tsuneda, M. N. Thormann, and R. S. Currah, “Modes of Cell-Wall Degradation of Sphagnum Fuscum by Acremonium cf. curvulum and Oidiodendron maius,” Can. J. Bot. 79, 93–100 (2001).

    Google Scholar 

  98. M. R. Turetsky, S. E. Crow, R. J. Evans, D. H. Vitt, R. K. Wieder, “Trade-Offs in Resource Allocation among Moss Species Control Decomposition in Boreal Peatlands,” J. Ecol. 96, 1297–1305 (2008).

    Article  Google Scholar 

  99. M. R. Turetsky, R. K. Wieder, C. J. Williams, and D. H. Vitt, “Organic Matter Accumulation, Peat Chemistry, and Permafrost Melting in Peatlands of Boreal Alberta,” Ecoscience 7, 379–392 (2000).

    Google Scholar 

  100. E. Untiedt and K. Mueller, “Colonization of Sphagnum Cells by Lyophyllum palustre,” Can. J. Bot. 63, 757–761 (1985).

    Google Scholar 

  101. N. Van Breemen, “How Sphagnum Bogs Down Other Plants,” Trends Ecol. Evol. 10, 270–275 (1995).

    Article  Google Scholar 

  102. E. D. Vance and F. S. Chapin, “Substrate-Environment Interactions: Multiple Limitations To Microbial Activity in Taiga Forest Floors,” Soil Biol. Biochem. 33, 173–188 (2001).

    Article  Google Scholar 

  103. M. Wainwright, T. A. Ali, and K. Killham, “Anaerobic Growth of Fungal Mycelium from Soil Particles onto Nutrient-Free Silica Gel,” Mycol. Res. 98(7), 761–762 (1994).

    Article  Google Scholar 

  104. J. H. Walsh, “Growth and Deteriorative Ability of Fungi at Low Oxygen Tensions,” Proc. 2nd Intern. Biodeterioration Symp., Lunteren, The Netherlands, 1971, Vol. 2, 152–161.

    Google Scholar 

  105. J. H. Walsh and C. S. Stewart, “Effect of Temperature, Oxygen and Carbon Dioxide on Cellulolytic Activity of Some Fungi,” Trans. Brit. Mycol. Soc. 57 (1971).

  106. J. M. Wells and M. Uota, “Germination and Growth of Five Fungi in Low-Oxygen and High-Carbon Dioxide Atmosphere,” Phytopathology 60, 50–53 (1970).

    Article  Google Scholar 

  107. C. J. Williams, F. A. Shingaraa, and J. B. Yavitta, “Phenol Oxidase Activity in Peatlands in New York State: Response to Summer Drought and Peat Type,” Wetlands 20(2), 416–421 (2000).

    Article  Google Scholar 

  108. C. Zaccone, D. Said-Pullicino, G. Gigliotti, and T. M. Miano, “Diagenetic Trends in the Phenolic Constituents of Sphagnum-Dominated Peat and Its Corresponding Humic Acid Fraction,” Organic Geochem. 39(7), 830–838 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Golovchenko.

Additional information

Original Russian Text © A.V. Golovchenko, A.V. Kurakov, T.A. Semenova, D.G. Zvyagintsev, 2013, published in Pochvovedenie, 2013, No. 1, pp. 80–97.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovchenko, A.V., Kurakov, A.V., Semenova, T.A. et al. Abundance, diversity, viability, and factorial ecology of fungi in peatbogs. Eurasian Soil Sc. 46, 74–90 (2013). https://doi.org/10.1134/S1064229313010031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229313010031

Keywords

Navigation