Skip to main content
Log in

Study of a Pulsed Air Flow in a Large Vacuum Chamber by Means of a Commercial Ionization Gauge

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A method for creating a pressure gradient by pulsed injection of air into a large vacuum chamber for laboratory simulation of plasma phenomena in a vertically nonuniform atmosphere is proposed. The dynamics of subsonic and transonic air flows at different background chamber pressures is studied. The feasibility of creating and detecting instantaneous pressure drops by more than two orders of magnitude on a scale of about one meter is shown. Features of the operation of the PMI-10-2 ionization gauge used for pressure measurements in a pulsed gas flow are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. P. Pasko, J. Geophys. Res. 115, A00E3 (2010).

  2. M. Rabinowitz, A. P. Meliopoulos, E. Glytsis, and J. G. Cokkinides, Int. J. Mod. Phys. B 6, 3353 (1992).

    Article  ADS  Google Scholar 

  3. A. V. Eremin, V. A. Kochnev, and I. M. Naboko, J. Appl. Mech. Tech. Phys. 16, 196 (1975).

    Article  ADS  Google Scholar 

  4. A. V. Eremin, V. A. Kochnev, A. A. Kulikovskii, and I. M. Naboko, J. Appl. Mech. Tech. Phys. 19, 27 (1978).

    Article  ADS  Google Scholar 

  5. V. A. Kochnev and I. M. Naboko, J. Appl. Mech. Tech. Phys. 21, 245 (1980).

    Article  ADS  Google Scholar 

  6. G. J. Schulz and A. V. Phelps, Rev. Sci. Instrum. 28, 1051 (1957).

    Article  ADS  Google Scholar 

  7. W. R. Gentry and C. F. Giese, Rev. Sci. Instrum. 49, 595 (1978).

    Article  ADS  Google Scholar 

  8. C. J. Keyser, M. Dembinski, and P. K. John, Rev. Sci. Instrum. 51, 425 (1980).

    Article  ADS  Google Scholar 

  9. D. Proch and T. Trickl, Rev. Sci. Instrum. 60, 713 (1989).

    Article  ADS  Google Scholar 

  10. V. A. Baturin, A. Yu. Karpenko, and S. V. Kolin’ko, Visn. Sums’kogo Derzh. Univ. Ser. Fiz., Mat., Mekh. 67 (8), 138 (2004).

    Google Scholar 

  11. O. S. Kuznetsov, P. B. Repin, R. V. Savchenko, and V. T. Selyavskii, Instrum. Exp. Tech. 44, 260 (2001).

    Article  Google Scholar 

  12. A. V. Strikovskiy, A. A. Evtushenko, M. E. Gushchin, S. V. Korobkov, and A. V. Kostrov, Plasma Phys. Rep. 43, 1031 (2017).

    Article  ADS  Google Scholar 

  13. S. T. Barashkin, S. N. Syromyatnikov, O. I. Tyutyunnik, B. T. Porodnov, and Yu. M. Koshelev, Prib. Tekh. Eksp., No. 3, 137 (1989).

Download references

ACKNOWLEDGMENTS

This work was performed within the frame of State Assignement to the Institute of Applied Physics, Russian Academy of Sciences (project no. 0035-2018-0021) and was supported by the Ministry of Education and Science of the Russian Federation (contract no. 14.Z50.31.0007) and the Russian Foundation for Basic Research (project no. 17-05-01182-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Korobkov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobkov, S.V., Gushchin, M.E., Strikovskiy, A.V. et al. Study of a Pulsed Air Flow in a Large Vacuum Chamber by Means of a Commercial Ionization Gauge. Tech. Phys. 64, 27–33 (2019). https://doi.org/10.1134/S1063784219010171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219010171

Navigation