Skip to main content
Log in

The Degree of Air Ionization in а Plasma of а Non-Stationary Pulsating Discharge in Subsonic and Supersonic Flows

  • CHEMICAL PHYSICS, PHYSICAL KINETICS, AND PLASMA PHYSICS
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The ionization degree of the plasma in a nonstationary pulsating discharge created by a stationary power source in subsonic and supersonic airflows has been determined. lt was experimentally found that the electron density in the plasma near electrodes varies from 1015 to 3.7 × 1016 cm–3 and the gas temperature increases from 400 to 1250 K when the flow velocity varies from 150 to 520 m/s at a constant discharge current of 15.5 A. It is shown that the gas ionization degree in the pulsating discharge plasma is on the order of l0–4 at low subsonic airflow velocities, while with the increase in the flow rate it increases sharply and reaches the value of 10–2 at the velocity of 500 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. I. Alferov and L. S. Bushmin, J. Exp. Theor. Phys. 17, 1190 (1963).

    Google Scholar 

  2. V. I. Alferov, A. S. Bushmin, and B. V. Kalachev, J. Exp. Theor. Phys. 24, 859 (1967).

    ADS  Google Scholar 

  3. V. I. Alferov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 163 (2004).

  4. A. P. Ershov, O. S. Surkont, I. B. Timofeev, V. M. Shibkov, and V. A. Chernikov, High Temp. 42, 516 (2004). doi 10.1023/B:HITE.0000039979.89955.df

    Article  Google Scholar 

  5. A. P. Ershov, O. S. Surkont, I. B. Timofeev, V. M. Shibkov, and V. A. Chernikov, High Temp. 42, 667 (2004). doi 10.1023/B:HITE.0000046519.53287.47

    Article  Google Scholar 

  6. A. P. Ershov, A. V. Kalinin, O. S. Surkont, K. B. Timofeev, V. M. Shibkov, and V. A. Chernikov, High Temp. 42, 865 (2004). doi 10.1007/s10740-005-0005-8

    Article  Google Scholar 

  7. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Plasma Phys. Rep. 43, 373 (2017). doi 10.1134/S1063780X17030114

    Article  ADS  Google Scholar 

  8. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Moscow Univ. Phys. Bull. 72, 294 (2017). doi 10.3103/S0027134917030109

    Article  ADS  Google Scholar 

  9. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Plasma Phys. Rep. 44, 746 (2018). doi 10.1134/S1063780X18080056

    Article  ADS  Google Scholar 

  10. P. V. Kopyl, O. S. Surkont, V. M. Shibkov, and L. V. Shibkova, Plasma Phys. Rep. 38, 503 (2012). doi 10.1134/S1063780X12050054

    Article  ADS  Google Scholar 

  11. R. S. Konstantinovskii, V. M. Shibkov, and L. V. Shibkova, Kinet. Catal. 46, 775 (2005). doi 10.1007/s10975-005-0136-2

    Article  Google Scholar 

  12. S. M. Starikovskaya, J. Phys. D: Appl. Phys. 39, R265 (2006).

    Article  ADS  Google Scholar 

  13. A. Y. Starikovskii, N. B. Anikin, I. N. Kosarev, E. I. Mintoussov, M. M. Nudnova, A. E. Rakitin, D. V. Roupassov, S. M. Starikovskaia, and V. P. Zhukov, J. Propul. Power 24, 1182 (2008).

    Article  Google Scholar 

  14. I. V. Adamovich, W. R. Lempert, J. W. Rich, and Y. G. Utkin, J. Propul. Power 24, 1198 (2008).

    Article  Google Scholar 

  15. V. M. Shibkov, A. F. Aleksandrov, V. A. Chernikov, A. P. Ershov, and L. V. Shibkova, J. Propul. Power 25, 123 (2009). doi 10.2514/1.24803

    Article  Google Scholar 

  16. S. Yu. Kazantsev, I. G. Kononov, I. A. Kossyi, N. M. Tarasova, K. N. Firsov, Fiz. Plazmy 35 (3), 281 (2009).

    Google Scholar 

  17. N. L. Aleksandrov, S. V. Kindysheva, E. N. Kukaev, S. M. Starikovskaya, and A. Yu. Starikovskii, Plasma Phys. Rep. 35, 867 (2009).

    Article  ADS  Google Scholar 

  18. V. M. Shibkov, L. V. Shibkova, V. G. Gromov, A. A. Karachev, and R. S. Konstantinovskii, High Temp. 49, 155 (2011). doi 10.1134/S0018151X11020143

    Article  Google Scholar 

  19. V. M. Shibkov and L. V. Shibkova, Tech. Phys. 54, 1467 (2009). doi 10.1134/S1063784209100107

    Article  Google Scholar 

  20. V. M. Shibkov and L. V. Shibkova, Tech. Phys. 55, 58 (2010). doi 10.1134/S106378421001010X

    Article  Google Scholar 

  21. N. O. Arkhipov, I. A. Znamenskaya, I. V. Mursenkova, I. Yu. Ostapenko, and N. N. Sysoev, Moscow Univ. Phys. Bull. 69, 96 (2014).

    Article  ADS  Google Scholar 

  22. K. Artem’ev, S. Yu. Kazantsev, N. G. Kononov, L. A. Kossyi, N. I. Malykh, N. A. Popov, N. M. Tarasova, E. A. Filimonova, and K. N. Firsov, J. Phys. D: Appl. Phys. 46, 055201 (2013). doi 10.1088/0022-3727/46/5/055201

    Article  ADS  Google Scholar 

  23. S. B. Leonov, D. A. Yarantsev, A. P. Napartovich, and I. V. Kochetov, IEEE Trans. Plasma Sci. 34, 2514 (2006).

    Article  ADS  Google Scholar 

  24. L. S. Jacobsen, C. D. Carter, T. A. Jackson, S. Williams, and J. Barnet, J. Propul. Power 24, 641 (2008).

    Article  Google Scholar 

  25. V. M. Shibkov, A. F. Aleksandrov, A. P. Ershov, I. B. Timofeev, V. A. Chernikov, and L. V. Shibkova, Plasma Phys. Rep. 31, 795 (2005). doi 10.1134/1.2048839

    Article  ADS  Google Scholar 

  26. V. M. Shibkov, A. P. Ershov, V. A. Chernikov, and L. V. Shibkova, Tech. Phys. 50, 455 (2005).

    Article  Google Scholar 

  27. V. M. Shibkov, S. A. Dvinin, A. P. Ershov, and L. V. Shibkova, Tech. Phys. 50, 462 (2005).

    Article  Google Scholar 

  28. V. M. Shibkov, L. V. Shibkova, and A. A. Karachev, High Temp. 47, 620 (2009). doi 10.1134/S0018151X09050022

    Article  Google Scholar 

  29. A. F. Aleksandrov, A. A. Kuzovnikov, and V. M. Shibkov, J. Eng. Phys. Thermophys. 62, 519 (1992).

    Article  Google Scholar 

  30. A. F. Aleksandrov, V. M. Shibkov, and L. V. Shibkova, High Temp. 48, 611 (2010). doi 10.1134/S0018151X10050019

    Article  Google Scholar 

  31. G. N. Abramovich, Applied Gas Dynamics, 4th ed. (Nauka, Moscow, 1976).

    Google Scholar 

  32. Plasma Diagnostics, Ed. by W. Lochte-Holtgreven (Wiley, New York, 1968).

    Google Scholar 

  33. A. S. Zarin, A. A. Kuzoviikov, and V. M. Shibkov, Freely Localized Microwave Discharge in Air (Neft’ i Gaz, Moscow, 1996).

  34. L. V. Shibkova and V. M. Shibkov, Discharge in Mixtures of Inert Gases (Fizmatlit, Moscow, 2005).

    Google Scholar 

  35. J. J. Olivero and R. L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233 (1977).

    Article  ADS  Google Scholar 

  36. N. T. Pashchenko and Yu. P. Raizer, Fiz. Plazmy 8, 1086 (1982).

    ADS  Google Scholar 

  37. V. V. Zlobin, A. A. Kuzovnikov, and V. M. Shibkov, Vestn. Mosk. Univ. Fiz. Astron. 29 (1), 89 (1988).

    Google Scholar 

  38. V. M. Shibkov, High Temp. 35, 681 (1997).

    Google Scholar 

  39. V. M. Shibkov, High Temp. 35, 858 (1997).

    Google Scholar 

  40. A. M. Devyatov, A. A. Kuzovnikov, V. V. Lodinev, and V. M. Shibkov, Vestn. Mosk. Univ. Fiz. Astron. 32 (2), 29 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Shibkov.

Additional information

Translated by L. Mosina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibkov, V.M., Shibkova, L.V. & Logunov, A.A. The Degree of Air Ionization in а Plasma of а Non-Stationary Pulsating Discharge in Subsonic and Supersonic Flows. Moscow Univ. Phys. 73, 501–506 (2018). https://doi.org/10.3103/S0027134918050168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918050168

Keywords:

Navigation