Skip to main content
Log in

Effect of Annealing on Structural, Textural, Thermal, Magnetic, and Luminescence Properties of Calcium Fluoride Nanoparticles

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Mesoporous nanocrystalline CaF2 powder was produced by pulsed electron beam evaporation (PEBE) in vacuum. The specific surface area (SSA) of CaF2 nanopowder (NP) reached 88.7 m2/g. The effect of in-air thermal annealing in the temperature range of 200–900°C on the particle size, morphology, textural, thermal, magnetic, and luminescence properties of NPs is studied. A strong deviation from stoichiometry is observed in produced nanoparticles and a significant increase in the SSA after annealing at 200°C. The obtained CaF2 NP shows ferromagnetic (FM) behavior. The FM response appearance can be explained by the formation of structural and radiation defects. An analysis of pulsed cathodoluminescence (PCL) and magnetization curves of CaF2 NPs allows conclusions about their interrelation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. P. P. Fedorov, S. V. Kuznetsov, and V. V. Osiko, in Photonic and Electronic Properties of Fluoride Materials, Ed. by A. Tressaud and K. R. Poeppelmeier, Progress in Fluorine Science Series (Elsevier, Amsterdam, 2016), p. 7.

    Google Scholar 

  2. N. Sholina, P. Demina, D. Khochenkov, A. Generalova, A. Nechaev, and E. Khaydukov, EPJ Web Conf. 190, 26 (2018).

    Article  Google Scholar 

  3. J. Lellouche, A. Friedman, A. Gedanken, and E. Banin, Int. J. Nanomed. 7, 5611 (2012).

    Google Scholar 

  4. V. S. Kortov, Rad. Meas. 45, 512 (2012).

    Article  Google Scholar 

  5. S. V. Kuznetsov, O. A. Morozov, V. G. Gorieva, M. N. Mayakova, M. A. Marisov, V. V. Voronov, A. D. Yapryntsev, V. K. Ivanov, A. S. Nizamutdinov, V. V. Semashko, and P. P. Fedorov, J. Fluorine Chem. 211, 70 (2018).

    Article  Google Scholar 

  6. X. Sun and Y. Li, Chem. Commun. 0, 1768 (2003).

    Article  Google Scholar 

  7. Z. Li, Y. Zhang, L. Huang, Y. Yang, Y. Zhao, G. El-Banna, and G. Han, Theranostics 6, 2380 (2016).

    Article  Google Scholar 

  8. M. S. Akchurin, T. T. Basiev, A. A. Demidenko, M. E. Doroshenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, S. V. Kuznetsov, M. A. Krutov, I. A. Mironov, V. V. Osiko, and P. A. Popov, Opt. Mater. 35, 444 (2013).

    Article  ADS  Google Scholar 

  9. X. Zhang, Z. Quan, J. Yang, P. Yang, H. Lian, and J. Lin, J. Nanotechnol. 19, 075603 (2008).

    Article  ADS  Google Scholar 

  10. C. Pandurangappa, B. N. Lakshminarasappa, and B. M. Nagabhushana, J. Alloys Compd. 489, 592 (2010).

    Article  Google Scholar 

  11. P. T. Patil, A. Dimitrov, J. Radnik, and E. Kemnitz, J. Mater. Chem. 18, 1632 (2008).

    Article  Google Scholar 

  12. A. Bensalah, M. Mortier, G. Patriarche, P. Gredin, and D. Vivien, J. Solid State Chem. 179, 2636 (2006).

    Article  ADS  Google Scholar 

  13. A. Safronikhin, H. Ehrlich, and G. Lisichkin, J. Alloys Compd. 694, 1182 (2017).

    Article  Google Scholar 

  14. L. Sun and L. C. Chow, Dent. Mater. 24, 111 (2008).

    Article  Google Scholar 

  15. L. Ma, L. L. Yang, Y. G. Wang, X. P. Zhou, and X. Y. Xu, Ceram. Int. 39, 5973 (2013).

    Article  Google Scholar 

  16. R. Witter, M. Roming, C. Feldmann, and A. S. Ulrich, J. Colloid Interface Sci. 390, 250 (2013).

    Article  ADS  Google Scholar 

  17. M. Dreger, G. Scholz, and E. Kemnitz, Solid State Sci. 14, 528 (2012).

    Article  ADS  Google Scholar 

  18. R. N. Grass and W. J. Stark, Chem. Commun. 0, 1767 (2005).

    Article  Google Scholar 

  19. A. Astruc, C. Cochon, S. Dessources, S. Célérier, and S. Brunet, Appl. Catal. A 453, 20 (2013).

    Article  Google Scholar 

  20. V. V. Osipov, V. V. Lisenkov, V. V. Platonov, and E. V. Tikhonov, Quantum Electron. 48, 235 (2018).

    Article  ADS  Google Scholar 

  21. P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarina, and S. Gross, RSC Adv. 5, 16302 (2015).

  22. H. Kim and A. H. King, J. Mater. Res. 22, 2012 (2007).

    Article  ADS  Google Scholar 

  23. R. F. C. Farrow, P. W. Sullivan, G. M. Williams, G. R. Jones, and D. C. Cameron, J. Vac. Sci. Technol. 19, 415 (1981).

    Article  ADS  Google Scholar 

  24. A. de Bonis, A. Santagata, A. Galasso, M. Sansone, and R. Teghil, Appl. Surf. Sci. 302, 145 (2014).

    Article  ADS  Google Scholar 

  25. A. Klust, R. Kayser, and J. Wollschlager, Phys. Rev. B 62, 2158 (2000).

    Article  ADS  Google Scholar 

  26. M. Ylilammi and T. Rantaaho, J. Electrochem. Soc. 141, 1278 (1994).

    Article  Google Scholar 

  27. A. V. Blednov, O. Y. Gorbenko, S. V. Samoilenkov, V. A. Amelichev, V. A. Lebedev, K. S. Napolskii, and A. R. Kaul, Chem. Mater. 22, 175 (2010).

    Article  Google Scholar 

  28. H. Wang, R. Liu, K. Chen, X. Shi, and Z. Xu, Thin Solid Films 519, 6438 (2011).

    Article  ADS  Google Scholar 

  29. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).

    Article  ADS  Google Scholar 

  30. P. D. Belsare, C. P. Joshi, S. V. Moharil, S. K. Omanwar, P. L. Muthal, and S. M. Dhopte, Opt. Mater. 31, 668 (2009).

    Article  ADS  Google Scholar 

  31. S. Yu. Sokovnin, V. G. Il’ves, M. G. Zuev, and M. A. Uimin, J. Phys.: Conf. Ser. 1115, 032092 (2018).

    Google Scholar 

  32. A. Lushchik, C. Lushchik, E. Vasil’chenko, and A. I. Po-pov, Low Temp. Phys. 44, 269 (2018).

    Article  ADS  Google Scholar 

  33. A. E. Angervaks, A. V. Veniaminov, M. V. Stolyarchuk, V. E. Vasilev, I. Kudryavtseva, P. P. Fedorov, and A. I. Ryskin, J. Opt. Soc. Am. B 35, 1288 (2018).

    Article  ADS  Google Scholar 

  34. A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, Opt. Spectrosc. 110, 660 (2011).

    Google Scholar 

  35. A. I. Ryskin, N. T. Bagraev, A. Lushchik, E. Shablonin, I. Kudryavtseva, and A. E. Angervaks, Solid State Ionics 323, 136 (2018).

    Article  Google Scholar 

  36. A. I. Ryskin, P. P. Fedorov, N. T. Bagraev, A. Lushchik, A. E. Angervaks, and I. Kudryavtseva, J. Fluorine Chem. 200, 109 (2017).

    Article  Google Scholar 

  37. R. Assylbayev, A. Lushchik, Ch. Lushchik, I. Kudryavtseva, E. Shablonin, E. Vasil’chenko, A. Akilbekov, and M. Zdorovets, Opt. Mater. 75, 196 (2018).

    Article  ADS  Google Scholar 

  38. C. S. Bezerran and M. E. G. Valerio, Phys. B (Amsterdam, Neth.) 501, 106 (2016).

  39. S. V. Kuznetsov, O. A. Morozov, V. G. Gorieva, M. N. Mayakova, M. A. Marisov, V. V. Voronov, A. D. Yapryntsev, V. K. Ivanov, A. S. Nizamutdinov, V. V. Semashko, and P. P. Fedorov, J. Fluorine Chem. 211, 70 (2018).

    Article  Google Scholar 

  40. M. Straßer, J. H. X. Schrauth, S. Dembski, D. Haddad, B. Ahrens, S. Schweizer, B. Christ, A. Cubukova, M. Metzger, H. Walles, P. M. Jakob, and G. Sext, Beilstein J. Nanotech. 8, 1484 (2017).

    Google Scholar 

  41. N. Kumar, Master’s Thesis (Jawaharlal Nehru Centre for Adv. Sci. Res., A Deemed Univ., Bangalore, India, 2010).

  42. S. Yu. Sokovnin and V. G. Il’ves, Ferroelectrics 436, 101 (2012).

    Article  Google Scholar 

  43. S. Y. Sokovnin, V. G. Il’ves, and M. G. Zuev, in Engineering of Nanobiomaterials: Applications of Nanobiomaterials, Ed. by A. M. Grumezesab (Elsevier, Amsterdam, 2016), Vol. 2, p. 29.

    Google Scholar 

  44. C. G. Mikhailov, V. V. Osipov, and V. I. Solomonov, Prib. Tekh. Eksp. 44, 164 (2001).

    Google Scholar 

  45. A. Smakula, Phys. Rev. 77, 408 (1949).

    Article  ADS  Google Scholar 

  46. W. Bontinck, Physica (Amsterdam, Neth.) 24, 639 (1958).

  47. M. Izerrouken, L. Guerbous, and A. Meftah, Nucl. Instrum. Methods Phys. Res., Sect. A 621, 68 (2010).

    Google Scholar 

  48. I. Nicoara, M. Stef, D. Vizman, and C. D. Negut, Radiat. Phys. Chem. 153, 70 (2018).

    Article  ADS  Google Scholar 

  49. M. Izerrouken, A. Meftah, and M. Nekkab, J. Lumin. 127, 696 (2007).

    Article  Google Scholar 

  50. F. K. Fong and P. N. Yocom, J. Chem. Phys. 41, 1383 (1964).

    Article  ADS  Google Scholar 

  51. W. J. Scouler and A. Smakula, Phys. Rev. 120, 1154 (1960).

    Article  ADS  Google Scholar 

  52. V. Ausin and J. L. Alvarez Rivas, Phys. Rev. B 9, 775 (1974).

    Article  ADS  Google Scholar 

  53. N. O. Dantas, S. Watanabe, and J. F. D. Chubaci, Nucl. Instrum. Methods Phys. Res., Sect. B 116, 269 (1996).

    Google Scholar 

  54. C. Florea, M. Zamfires, F. Jipa, and A. Velea, J. Intense Pulsed Laser Appl. Adv. Phys. 1, 1 (2011).

    Google Scholar 

  55. R. Assylbayev, A. Akilbekov, A. Dauletbekova, A. Lu-shchik, E. Shablonin, and E. Vasil’chenko, Rad. Meas. 90, 18 (2016).

    Article  Google Scholar 

  56. S. L. Baldochi and I. M. Ranieri, Acta Phys. Polon. A 124, 286 (2013).

    Article  Google Scholar 

  57. S. D. McLaughlan and H. W. Evans, Cryst. Phys. Status Solidi 27, 695 (1968).

    Article  ADS  Google Scholar 

  58. E. S. Bochkareva, A. I. Sidorov, U. V. Yurina, and O. A. Podsvirov, Nucl. Instrum. Methods Phys. Res., Sect. B 403, 1 (2017).

    Google Scholar 

  59. AEROSIL-Fumed Silica Technical Overview. https://www.aerosil.com/sites/lists/RE/DocumentsSI/Technical-Overview-AEROSIL-Fumed-Silica-EN.pdf.

  60. C. Yu. Sokovnin, V. G. Il’ves, M. G. Zuev, and M. A. Uimin, Tech. Phys. Lett. 44, 765 (2018).

    Article  ADS  Google Scholar 

  61. A. Astruc, C. Cochon, S. Dessources, S. C’el’erier, and S. Brunet, Appl. Catal. A 453, 20 (2013).

    Article  Google Scholar 

  62. S. Y. Arkhipenko, A. A. Fedorova, I. V. Morozov, and A. S. Shaporev, Mendeleev Commun. 22, 25 (2012).

    Article  Google Scholar 

  63. T. Yu. Glazunova, A. I. Boltalin, and P. P. Fedorov, Russ. J. Inorg. Chem. 51, 983 (2006).

    Article  Google Scholar 

  64. H. Kim and A. H. King, J. Mater. Res. 22, 2012 (2007).

    Article  ADS  Google Scholar 

  65. I. G. Ryss, The Chemistry of Fluorine and Its Inorganic Compounds (Goskhimizdat, Moscow, 1966) [in Russian].

    Google Scholar 

  66. L. R. Batsanova and N. V. Podberezskaya, Zh. Neorg. Khim. 11, 987 (1966).

    Google Scholar 

  67. R. Bennewitz, C. Günther, M. Reichling, E. Matthias, S. Vijayalakshmi, A. V. Barnes, and N. H. Tolk, Appl. Phys. Lett. 66, 320 (1995).

    Article  ADS  Google Scholar 

  68. L. P. Cramer, B. E. Schubert, P. S. Petite, and S. C. Langford, J. Appl. Phys. 97, 074307 (2005).

    Article  ADS  Google Scholar 

  69. M. Huisinga, N. Bouchaala, R. Bennewitz, E. A. Kotomin, M. Reichling, V. N. Kuzovkov, and W. von Niessen, Nucl. Instrum. Methods Phys. Res., Sect. B 141, 79 (1998).

    Google Scholar 

  70. L. P. Cramer, S. C. Langford, and J. T. Dickinson, J. Appl. Phys. 99, 054305 (2006).

    Article  ADS  Google Scholar 

  71. A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 75, 2340 (1971).

    Article  Google Scholar 

  72. P. E. Halstead and A. E. Moore, J. Chem. Soc. 0, 3873 (1957).

    Article  Google Scholar 

  73. T. S. Minakova and I. A. Ekimova, Alkaline Earth Metal and Magnesium Fluorides and Oxides, Surface Properties (Tomsk. Gos. Univ., Tomsk, 2014) [in Russian].

    Google Scholar 

  74. K. V. Balen, Cem. Concr. Res. 35, 647 (2005).

    Article  Google Scholar 

  75. V. Nikulshina, M. E. G’alvez, and A. Steinfeld, Chem. Eng. J. 129, 75 (2007).

    Article  Google Scholar 

  76. Z. Mirghiasi, F. Bakhtiari, E. Darezereshki, and E. Esmaeilzadeh, J. Ind. Eng. Chem. 20, 113 (2014).

    Article  Google Scholar 

  77. F. Beuneu, C. Florea, and P. Vajda, Radiat. Eff. Defects Solids 136, 175 (1995).

    Article  Google Scholar 

  78. A. Lust, Dissertation (Inst. Chem. Phys., Univ. Tartu, Estonia, 2007), p. 43.

  79. S. V. Kuznetsov, V. Yu. Proydakova, O. A. Morozov, V. G. Gorieva, M. A. Marisov, V. V. Voronov, A. D. Yapryntsev, V. K. Ivanov, A. S. Nizamutdinov, V. V. Semashko, and P. P. Fedorov, Nanosyst.: Phys. Chem. Math. 9, 663 (2018).

    Google Scholar 

  80. N. D. Alharbi, J. Nanomater. 2015, 136957 (2015).

    Article  Google Scholar 

  81. N. Salah, N. D. Alharbi, S. S. Habib, and S. P. Lochab, J. Nanomater. 2015, 136402 (2015).

    Article  Google Scholar 

  82. F. Somma, R. M. Montereali, M. A. Vincenti, S. Polosan, and M. Secu, Phys. Proc. 2, 211 (2009).

    Article  ADS  Google Scholar 

  83. S. Rix, U. Natura, F. Loske, M. Letz, C. Felser, and M. Reichling, Appl. Phys. Lett. 99, 261909 (2011).

    Article  ADS  Google Scholar 

  84. V. M. Orera and E. Alcalá, Phys. Status Solidi A 38, 621 (1976).

    Article  ADS  Google Scholar 

  85. T. Aokia, L. A. J. Garvie, and P. Rezc, Ultramicroscopy 153, 40 (2015).

    Article  Google Scholar 

  86. S. Yu. Sokovnin, V. G. Il’ves, M. G. Zuev, and M. A. Uimin, J. Phys.: Conf. Ser. 1115, 032092 (2018).

    Google Scholar 

  87. T. J. Glynn, J. Lumin. 48–49, 783 (1991).

    Article  Google Scholar 

  88. O. T. Antonyak, V. V. Vistovskyy, A. V. Zhyshkovych, and I. M. Kravchuk, J. Lumin. 67, 249 (2015).

    Article  Google Scholar 

  89. P. V. Figura, A. I. Nepomnyashchikh, and E. A. Radzhabov, Opt. Spectrosc. 65, 553 (1988).

    ADS  Google Scholar 

  90. U. Kempe, in Proceedings of the RMS DPI Fedorov Session 2006, St. Petersburg, Russia (2006), 2006-1-58-1, p. 162. http://www.minsoc.ru/FilesBase/2006-1-58-1.pdf.

  91. R. S. W. Braithwaite, W. T. Flowers, R. N. Haszeldine, and M. Russell, Min. Mag. 39, 401 (1973).

    Article  Google Scholar 

  92. R. Thaoklua, J. Janjaroen, K. Tedsree, and Chiang Mai, J. Sci. 45, 973 (2018).

    Google Scholar 

  93. H. Petitjean, C. Chizallet, J. M. Krafft, M. Che, H. Lauron-Pernot, and G. Costentin, Phys. Chem. Chem. Phys. 12, 14740 (2010).

    Article  Google Scholar 

  94. O. Nakhaei, N. Shahtahmassebi, M. Rezaeeroknabadi, and M. M. B. Mohagheghi, Sci. Iran. 19, 1979 (2012).

    Article  Google Scholar 

  95. R. Rao and H. N. Bose, Physica (Amsterdam, Neth.) 52, 371 (1971).

  96. M. Topaksu, V. Correcher, and J. Garcia-Guinea, Rad. Phys. Chem. 119, 151 (2016).

    Article  ADS  Google Scholar 

  97. T. Kogure, K. Saiki, M. Konno, and T. Kamino, Mater. Res. Soc. Proc. 504, 183 (1996).

    Article  Google Scholar 

  98. V. Denks, T. Savikhina, and V. Nagirnyi, Appl. Surf. Sci. 158, 301 (2000).

    Article  ADS  Google Scholar 

  99. E. P. Chinkov and V. F. Shtan’ko, Phys. Solid State 40, 1117 (1998).

    Article  ADS  Google Scholar 

  100. V. Denks, A. Maaroos, V. Nagirnyi, T. Savikhina, and V. Vassiltsenko, J. Phys.: Condens. Matter 11, 3115 (1999).

    ADS  Google Scholar 

  101. J. P. Russell, Proc. Phys. Soc. 85, 194 (1965).

    Article  ADS  Google Scholar 

  102. V. G. Mazurenko and M. G. Zuev, Sov. Phys. Solid State 34, 1489 (1992).

    Google Scholar 

  103. I. Alencar, J. Ruiz-Fuertes, K. Schwartz, C. Trautmann, L. Bayarjargal, E. Haussühl, and B. Winklere, J. Raman Spectrosc. 47, 978 (2016).

    Article  ADS  Google Scholar 

  104. J. M. D. Coey, Solid State Sci. 7, 660 (2005).

    Article  ADS  Google Scholar 

  105. K. Ackland and J. M. D. Coey, Phys. Rep. 746, 39 (2018).

    Article  Google Scholar 

  106. R. K. Singhal, P. Kumari, A. Samariya, S. Kumar, S. C. Sharma, Y. T. Xing, and E. B. Saitovitch, Appl. Phys. Lett. 97, 172503 (2010).

    Article  ADS  Google Scholar 

  107. K. Fabian, V. P. Shcherbakov, and S. A. McEnroe, Geochem. Geophys. Geosyst. 14, 947 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.V. Pryanichnikov for the X‑ray fluorescence analysis, T.M. Demina for textural and DSC-TG analysis, A.V. Spirina for recording and discussion of the pulsed cathodoluminescence spectra, and E.G. Vovkotrub for Raman spectra measurements. X-ray fluorescence analysis was performed at the Ural-M Shared Service Center of the Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, Yekaterinburg.

Funding

This study performed within the State contract no. 0389-2015-0026 was supported by the Russian Foundation for Basic Research, project no. 18-08-00514. This study was supported by the Estonian Ministry of Education, projects IUT2-24 and IUT20-54, and the project Namur + Ministry of Science and Education of the Estonian Republic. Magnetic measurements were performed within the State contract, project “Magnet” no. AAAA-A18-118020290129-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Il’ves.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ves, V.G., Sokovnin, S.Y., Zuev, M.G. et al. Effect of Annealing on Structural, Textural, Thermal, Magnetic, and Luminescence Properties of Calcium Fluoride Nanoparticles. Phys. Solid State 61, 2200–2217 (2019). https://doi.org/10.1134/S1063783419110179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419110179

Keywords:

Navigation