Skip to main content
Log in

Application of High-Frequency Electron Paramagnetic Resonance/Electron Spin Echo for the Identification of the Impurity Composition and Electronic Structure of Ceramics Based Garnets

  • IMPURITY CENTERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) spectra of Ce3+, Yb3+, Cr3+, and Gd3+ impurity ions in yttrium aluminum garnet Y3Al5O12 (YAG) ceramics were detected and identified at frequency of 94 GHz. The advantage of measuring the EPR spectra in the high-frequency range compared to the standard EPR technique is shown, which makes it possible to separate the EPR spectra characterized by different anisotropic g-factors and also to isolate the EPR signals due to the splitting of the fine structure for centers with high-spin states. In ceramics with a high content of magnetic Gd3+ ions, EPR and electron spin echo (ESE) spectra of multi-ionic gadolinium complexes were observed, and EPR spectra of complexes with the maximum number of exchange-coupled gadolinium ions are seen at low temperatures. The temperature dependences of the EPR spectra indicates ferromagnetic ordering of exchange-coupled complexes of gadolinium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Nikl, V. V. Laguta, and A. Vedda, Phys. Status Solidi B 245, 1701 (2008).

    Article  ADS  Google Scholar 

  2. C. Dujardin, C. Mancini, D. Amans, G. Ledoux, D. Abler, E. Auffray, P. Lecoq, D. Perrodin, K. Ova-nesyan, and A. Petrosyan, J. Appl. Phys. 108, 013510 (2010).

    Article  ADS  Google Scholar 

  3. R. Autrata, P. Schauer, Jos. Kvapil, and J. Kvapil, J. Phys. E 11, 707 (1978).

    ADS  Google Scholar 

  4. M. Moszynski, T. Ludziewski, D. Wolski, W. Klamra, and L. O. Norlin, Nucl. Instrum. Methods Phys. Res., Sect. A 345, 461 (1994).

    Google Scholar 

  5. P. Schlotter, R. Schmidt, and J. Schneider, J. Appl. Phys. A 64, 417 (1997).

    Article  ADS  Google Scholar 

  6. V. Bachmann, C. Ronda, and A. Meijerink, Chem. Mater. 21, 2077 (2009).

    Article  Google Scholar 

  7. V. Khanin, I. Venevtsev, S. Spoor, J. Boerekamp, A.‑M. van Dongen, H. Wieczorek, K. Chernenko, D. Buettner, C. Ronda, and P. Rodnyi, Opt. Mater. 72, 161 (2017).

    Article  ADS  Google Scholar 

  8. R. Kolesov, K. Xia, R. Reuter, M. Jamali, R. Stohr, T. Inal, P. Siyushev, and J. Wrachtrup, Phys. Rev. Lett. 111, 120502 (2013).

    Article  ADS  Google Scholar 

  9. P. Siyushev, K. Xia, R. Reuter, M. Jamali, N. Zhao, N. Yang, C. Duan, N. Kukharchyk, A. D. Wieck, R. Kolesov, and J. Wrachtrup, Nat. Commun. 5, 3895 (2014).

    Article  ADS  Google Scholar 

  10. K. Xia, R. Kolesov, Ya Wang, P. Siyushev, R. Reuter, T. Kornher, N. Kukharchyk, A. D. Wieck, B. Villa, S. Yang, and J. Wrachtrup, Phys. Rev. Lett. 115, 093602 (2015).

    Article  ADS  Google Scholar 

  11. A. G. Badalyan, G. V. Mamin, Yu. A. Uspenskaya, E. V. Edinach, H. R. Asatryan, N. G. Romanov, S. B. Orlinskii, P. G. Baranov, V. M. Khanin, H. Wieczorek, and C. Ronda, Phys. Status Solidi B 254, 1600631 (2017).

    Article  ADS  Google Scholar 

  12. D. O. Tolmachev, A. S. Gurin, Yu. A. Uspenskaya, G. R. Asatryan, A. G. Badalyan, N. G. Romanov, A. G. Petrosyan, P. G. Baranov, H. Wieczorek, and C. Ronda, Phys. Rev. B 95, 224414 (2017).

    Article  ADS  Google Scholar 

  13. Yu. A. Uspenskaya, G. V. Mamin, R. A. Babunts, A. G. Badalyan, E. V. Edinach, H. R. Asatryan, N. G. Romanov, S. B. Orlinskii, V. M. Khanin, H. Wieczorek, C. Ronda, and P. G. Baranov, AIP Adv 8, 035001 (2018).

    Article  ADS  Google Scholar 

  14. H. R. Lewis, J. Appl. Phys. 37, 739 (1966).

    Article  ADS  Google Scholar 

  15. G. R. Asatryan, D. D. Kramushchenko, Yu. A. Uspenskaya, P. G. Baranov, and A. G. Petrosyan, Phys. Solid State 56, 1150 (2014).

    Article  ADS  Google Scholar 

  16. G. F. Herrmann, J. J. Pearson, and K. A. Wickersheim, J. Appl. Phys. 37, 1312 (1966).

    Article  ADS  Google Scholar 

  17. D. L. Wood, J. Chem. Phys. 39, 1671 (1963).

    Article  ADS  Google Scholar 

  18. R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, Phys. Rev. 159, 245 (1967).

    Article  ADS  Google Scholar 

  19. M. T. Hutchings and W. P. Wolf, J. Chem. Phys. 41, 617 (1964).

    Article  ADS  Google Scholar 

  20. J. J. Pearson, G. F. Herrmann, K. A. Wickersheim, and R. A. Buchanan, Phys. Rev. 159, 251 (1967).

    Article  ADS  Google Scholar 

  21. D. S. Sumida and T. Y. Fan, OSA Proc. 10, 100 (1994).

  22. J. W. Carson and R. L. White, J. Appl. Phys. 31, S53 (1960).

    Article  ADS  Google Scholar 

  23. V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, A. A. Galeev, G. A. Ermakov, V. M. Lyubchenko, A. A. Markelov, N. M. Nizamutdinov, and N. M. Khasanova, Sov. Phys. Solid State 34, 398 (1992).

    Google Scholar 

  24. I. Sh. Akhmadullin, S. A. Migachev, and S. P. Mironov, Nucl. Instrum. Methods Phys. Res., Sect. B 65, 270 (1992).

    Google Scholar 

  25. G. Bums, E. A. Geiss, B. A. Jenkins, and M. I. Nathan, Phys. Rev. A 139, 1687 (1965).

    Article  ADS  Google Scholar 

  26. D. L. Wood, J. Ferguson, K. Knox, and J. F. Dillon, J. Chem. Phys. 39, 890 (1963).

    Article  ADS  Google Scholar 

  27. G. Blasse and A. Bril, J. Chem. Phys. 47, 5139 (1967).

    Article  ADS  Google Scholar 

  28. J. W. Carson and R. L. White, J. Appl. Phys. 32, 1787 (1961).

    Article  ADS  Google Scholar 

  29. L. J. Schwee and J. R. Cunningham, J. Appl. Phys. 37, 449 (1966).

    Article  ADS  Google Scholar 

  30. R. Valentin, H. Luft, and K. Baberschke, Phys. Status Solidi B 48, 763 (1971).

    Article  ADS  Google Scholar 

  31. V. A. Vazhenin, A. P. Potapov, G. R. Asatryan, Yu. A. Uspenskaya, A. G. Petrosyan, and A. V. Fokin, Phys. Solid State 58, 1627 (2016).

    Article  ADS  Google Scholar 

  32. Yu. V. Yablokov, V. K. Voronkova, and L. V. Mosina, Paramagnetic Resonance of Exchange Clusters (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Funding

This work has been supported by the Ministry of Education and Science (agreement no. 14.604.21.0200, unique identifier RFMEFI60417X0200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Edinach.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edinach, E.V., Uspenskaya, Y.A., Gurin, A.S. et al. Application of High-Frequency Electron Paramagnetic Resonance/Electron Spin Echo for the Identification of the Impurity Composition and Electronic Structure of Ceramics Based Garnets. Phys. Solid State 61, 1820–1828 (2019). https://doi.org/10.1134/S1063783419100135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419100135

Keywords:

Navigation