Skip to main content
Log in

Band gap of CdTe and Cd0.9Zn0.1Te crystals

  • Spectroscopy, Interaction with Radiation
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The band gap E g of the CdTe and Cd0.9Zn0.1Te crystals and its temperature dependence are determined by optical methods. This is motivated by considerable contradictoriness of the published data, which hampers the interpretation and calculation of characteristics of detectors of X-ray and γ radiation based on these materials (E g = 1.39–1.54 and 1.51–1.6 eV for CdTe and Cd0.9Zn0.1Te, respectively). The used procedure of determination of E g is analyzed from the viewpoint of the influence of the factors leading to inaccuracies in determination of its value. The measurements are performed for well-purified high-quality samples. The acquired data for CdTe (E g = 1.47–1.48 eV) and Cd0.9Zn0.1Te (E g = 1.52–1.53 eV) at room temperature substantially narrow the range of accurate determination of E g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Arkad’eva, O. A. Matveev, S. M. Ryvkin, and Yu. V. Rud’, Sov. Phys. Tech. Phys. 11, 846 (1966).

    Google Scholar 

  2. J. F. Butler, C. L. Lingren, and F. P. Doty, IEEE Trans. Nucl. Sci. 39, 605 (1992).

    Article  ADS  Google Scholar 

  3. R. H. Bube, Phys. Rev. 98, 431 (1955).

    Article  ADS  Google Scholar 

  4. C. Konak, Phys. Status Solidi 3, 1274 (1963).

    Article  Google Scholar 

  5. M. Cardona, K. Shaklee, and F. Pollak, Phys. Rev. 154, 697 (1967).

    Article  ADS  Google Scholar 

  6. S. Del Soldo, L. Abbene, E. Caroli, A. Mancini, A. Zappettini, and P. Ubertini, Sensors 9, 3491 (2009).

    Article  Google Scholar 

  7. Springer Handbook of Electronic and Photonic Materials, Ed. by S. Kasap and P. Capper (Springer Science, New York, 2006).

    Google Scholar 

  8. A. Owens and A. Peacock, Nucl. Instrum. Methods Phys. Res. A 531, 18 (2004).

    Article  ADS  Google Scholar 

  9. T. Takahashi and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).

    Article  ADS  Google Scholar 

  10. J. Franc, P. Hlídek, P. Moravec, E. Belas, P. Höschl, L. Turjanska, and R. Varghov’a, Semicond. Sci. Technol. 15, 561 (2000).

    Article  ADS  Google Scholar 

  11. S. M. Johnson, S. Sen, W. H. Konkel, and M. H. Kalisher, J. Vac. Sci. Technol. B 9, 1897 (1991).

    Article  Google Scholar 

  12. A. J. Syllaios, P. K. Liao, B. J. Greene, H. F. Schaake, H. Y. Liu, and G. Westphal, J. Electron. Mater. 26, 567 (1997).

    Article  ADS  Google Scholar 

  13. D. T. F. Marple, Phys. Rev. 150, 728 (1966).

    Article  ADS  Google Scholar 

  14. J. Singh, Physics of Semiconductors and Their Heterostructures (McGraw-Hill, New York, 1993).

    Google Scholar 

  15. P. S. Kireev, L. V. Volkova, V. V. Volkov, and Yu. V. Platonov, Sov. Phys. Semicond. 6, 109 (1971).

    Google Scholar 

  16. D. J. Olego, J. P. Faurie, S. Sivananthan, and P. M. Raccah, Appl. Phys. Lett. 47, 1172 (1985).

    Article  ADS  Google Scholar 

  17. P. Fougeres, P. Siffert, M. Hageali, J. M. Koebel, and R. Regal, Nucl. Instrum. Methods Phys. Res. A 428, 38 (1999).

    Article  ADS  Google Scholar 

  18. K. D. Glinchuk, N. M. Litovchenko, and O. N. Strilchuk, Semicond. Phys. Quant. Electron. Optoelectron. 6, 121 (2003).

    Google Scholar 

  19. A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, J. Appl. Phys. 83, 2121 (1998).

    Article  ADS  Google Scholar 

  20. M. Prokesch and C. Szeles, J. Appl. Phys. 100, 014503 (2006).

    Article  ADS  Google Scholar 

  21. J. L. Reno and E. D. Jones, Phys. Rev. B 45, 1440 (1992).

    Article  ADS  Google Scholar 

  22. E. López-Cruz, J. González-Hernández, D. Dallred, and W. P. Allred, J. Vac. Sci. Technol. A 8, 1934 (1990).

    Article  ADS  Google Scholar 

  23. N. Bottka, J. Stankiewicz, and W. Giriat, J. Appl. Phys. 52(6), 41 (1981).

    Article  Google Scholar 

  24. H. Kuzmany, Solid-State Spectroscopy: An Introduction (Springer-Verlag, Berlin, Heidelberg, New York, 1998).

    Google Scholar 

  25. E. J. Johnson, in Semiconductors and Semimetals, Ed. by R. K. Willardson and A. C. Beer (Academic Press, New York, 1967), vol. 3, p. 153.

    Google Scholar 

  26. J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, NJ, 1971).

    Google Scholar 

  27. M. Fox, Optical Properties of Solids (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  28. T. Toshifumi, S. Adachi, H. Nakanishi, and K. Ohtsuka, Jpn. Appl. Phys. 32, 3496 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Kosyachenko.

Additional information

Original Russian Text © L.A. Kosyachenko, V.M. Sklyarchuk, O.V. Sklyarchuk, O.L. Maslyanchuk, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 10, pp. 1323–1330.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosyachenko, L.A., Sklyarchuk, V.M., Sklyarchuk, O.V. et al. Band gap of CdTe and Cd0.9Zn0.1Te crystals. Semiconductors 45, 1273–1280 (2011). https://doi.org/10.1134/S1063782611100137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611100137

Keywords

Navigation