Skip to main content
Log in

Resonances related to an array of InAs quantum dots and controlled by an external electric field

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Photoluminescence of multilayer structures with InAs quantum dots grown in the p-n junction in GaAs by molecular-beam epitaxy is studied. Formation of vertical columns of quantum dots is verified by the data of transmission electron microscopy. It is shown that a natural increase in the size of quantum dots from layer to layer brings about their vertical coalescence at the upper part of a column. An unbalance of electronic levels caused by the enlargement of quantum dots was compensated by an external electric field, so that the resonance of ground electronic states in the column was attained. The onset of resonances was checked by the methods of steady-state and time-resolved photoluminescence. It is shown that, in the case of a resonance, the photoluminescence intensity and the radiative lifetime of excitons increase (up to 0.6–2 ns), while the time of tunneling of charge carriers becomes shorter (shorter than 150 ps). Outside the resonances, tunneling of electrons is appreciably enhanced owing to the involvement of longitudinal optical phonons. If only these phonons are involved, the time of nonresonance tunneling between quantum dots becomes shorter than the time of relaxation of charge carriers from the barrier (100 and 140 ps, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kamada, H. Gotoh, J. Temmyo, et al., Phys. Rev. Lett. 87, 246401 (2001).

  2. K. S. Gill, N. Maskovitz, L.-C. Wang, et al., Appl. Phys. Lett. 87, 162101 (2005).

    Google Scholar 

  3. F. Capasso, K. Mohammed, and A. Y. Cho, Appl. Phys. Lett. 48, 478 (1986).

    Article  ADS  Google Scholar 

  4. S. H. Kwok, H. T. Grahn, M. Ramsteiner, et al., Phys. Rev. B 51, 9943 (1995).

    Article  ADS  Google Scholar 

  5. Z. R. Wasilewski, S. Fafard, and J. P. McCaffrey, J. Cryst. Growth 201–202, 1131 (1999).

    Article  Google Scholar 

  6. V. G. Talalaev, B. V. Novikov, M. A. Smirnov, et al., Nanotechnology 13, 143 (2002).

    Article  ADS  Google Scholar 

  7. B. Ilahi, L. Sfaxi, F. Hassen, et al., Phys. Status Solidi A 199, 457 (2003).

    Article  Google Scholar 

  8. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Phys. Rev. Lett. 76, 952 (1996).

    Article  ADS  Google Scholar 

  9. M. Colocci, A. Vinattieri, L. Lippi, et al., Appl. Phys. Lett. 74, 564 (1999).

    Article  ADS  Google Scholar 

  10. S. Lan, K. Akahane, K.-Y. Jang, et al., Jpn. J. Appl. Phys. 38, 2934 (1999).

    Article  Google Scholar 

  11. N. Susa, IEEE J. Quantum Electron. 32, 1760 (1996).

    Article  ADS  Google Scholar 

  12. E. E. Mendez, F. Agulló-Rueda, and J. M. Hong, Phys. Rev. Lett. 60, 2426 (1988); Phys. Rev. B 40, 1357 (1989).

    Article  ADS  Google Scholar 

  13. W. Sheng and J.-P. Leburton, Appl. Phys. Lett. 81, 4449 (2002); Phys. Status Solidi B 237, 394 (2003).

    Article  ADS  Google Scholar 

  14. G. W. Bryant, Phys. Rev. B 47, 1683 (1993).

    Article  ADS  Google Scholar 

  15. D. Y. Oberli, J. Shah, T. C. Damen, et al., Appl. Phys. Lett. 56, 1239 (1990).

    Article  ADS  Google Scholar 

  16. O. Verzelen, S. Hameau, Y. Guldner, et al., Jpn. J. Appl. Phys. 40, 1941 (2001).

    Article  Google Scholar 

  17. H. Jiang and J. Singh, Physica E (Amsterdam) 2, 614 (1998).

    ADS  Google Scholar 

  18. F. Findeis, M. Baier, E. Beham, et al., Appl. Phys. Lett. 78, 2958 (2001).

    Article  ADS  Google Scholar 

  19. W. Sheng and J.-P. Leburton, Phys. Rev. B 63, 161301R (2001).

  20. P. W. Fry, I. E. Itskevich, D. J. Mowbray, et al., Phys. Rev. Lett. 84, 733 (2000).

    Article  ADS  Google Scholar 

  21. P. Harrison, Quantum Wells, Wires, and Dots: Theoretical and Computational Physics (Chichester, Wiley, 2000).

    Google Scholar 

  22. V. G. Talalaev, J. W. Tomm, N. D. Zakharov, et al., Appl. Phys. Lett. 85, 284 (2004).

    Article  ADS  Google Scholar 

  23. E. A. Zibik, L. R. Wilson, R. P. Green, et al., Semicond. Sci. Technol. 19, S316 (2004).

    Article  ADS  Google Scholar 

  24. A. Tackeuchi, T. Kuroda, K. Mase, et al., Phys. Rev. B 62, 1568 (2000).

    Article  ADS  Google Scholar 

  25. Y. I. Mazur, Z. M. Wang, G. G. Tarasov, et al., Phys. Rev. B 71, 235313 (2005).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.G. Talalaev, B.V. Novikov, A.S. Sokolov, I.V. Strom, J.W. Tomm, N.D. Zakharov, P. Werner, G.E. Cirlin, A.A. Tonkikh, 2007, published in Fizika i Tekhnika Poluprovodnikov, 2007, Vol. 41, No. 2, pp. 203–210.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talalaev, V.G., Novikov, B.V., Sokolov, A.S. et al. Resonances related to an array of InAs quantum dots and controlled by an external electric field. Semiconductors 41, 197–204 (2007). https://doi.org/10.1134/S1063782607020169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782607020169

PACS numbers

Navigation