Skip to main content
Log in

Control of Coherent Structures via External Drive of the Breathing Mode

  • PLASMA THRUSTERS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The Hall thruster exhibits two types of large-scale coherent structures: axially propagating breathing mode (m = 0) and azimuthal, with low m, typically m = 1, spoke mode. In our previous work, it was demonstrated that axial breathing mode can be controlled via the external modulations of the anode potential. Two regimes of the thruster response, linear and nonlinear, have been revealed depending on the modulation amplitude. In this work, using the high-speed camera images and developed image-processing technique, we have investigated the response of the azimuthal mode to the external modulations. We have found that, in linear regime, at low modulation voltages, axial and azimuthal structures coexist. At larger amplitudes, in the nonlinear regime, the azimuthal mode is suppressed, and only axial driven mode remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. A. Morozov, Plasma Phys. Rep. 29, 235 (2003).

    Article  ADS  Google Scholar 

  2. A. Morozov, A. Kislov, and I. Zubkov, JETP Lett. 7, 172 (1968).

    ADS  Google Scholar 

  3. A. Morozov, Y. Esipchuk, A. Kapulkin, V. Nevrovskii, and V. Smirnov, Sov. Phys. Tech. Phys. 17, 428 (1972).

    Google Scholar 

  4. A. Morozov, in Proceedings of the 2nd All-Union Conference on Plasma Accelerators, Minsk, 1974, Ed. by A. I. Morozov (Nauka i Tekhnika, Minsk, 1974), Vol. 1, p. 224.

  5. A. I. Morozov, Physical Principles of Space Electric Propulsion Thrusters (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  6. A. Morozov, in Proceedings of the 23rd International Electric Propulsion Conference, Seattle, WA, 1993, Paper IEPC-93-101.

  7. I. Romadanov, Y. Raitses, and A. Smolyakov, Plasma Sources Sci. Technol. 27, 094006 (2018).

    Article  ADS  Google Scholar 

  8. C. Ellison, Y. Raitses, and N. Fisch, Phys. Plasmas 19, 013503 (2012).

    Article  ADS  Google Scholar 

  9. C. Ellison, Y. Raitses, and N. Fisch, IEEE Trans. Plasma Sci. 99, 1 (2011).

    Google Scholar 

  10. A. Morozov, V. Nevrovskii, and V. Smirnov, Sov. Phys.-Tech. Phys. 18, 344 (1973).

    ADS  Google Scholar 

  11. S. Barral, J. Kaczmarczyk, J. Kurzyna, and M. Dudeck, Phys. Plasmas 18, 083504 (2011).

    Article  ADS  Google Scholar 

  12. S. Keller, Y. Raitses, and A. Diallo, in Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, 2014, Paper AIAA 2014-3509.

  13. I. Romadanov, Y. Raitses, A. Diallo, K. Hara, I. Kaganovich, and A. Smolyakov, Phys. Plasmas 25, 033501 (2018).

    Article  ADS  Google Scholar 

  14. V. V. Arsenin, High Temp. 8, 1202 (1970).

    Google Scholar 

  15. M. E. Griswold, C. L. Ellison, Y. Raitses, and N. J. Fisch, Phys. Plasmas 19, 053506 (2012).

    Article  ADS  Google Scholar 

  16. J. B. Taylor and C. N. Lashmore-Davies, AIP Conf. Proc. 1, 23 (1970).

    Article  ADS  Google Scholar 

  17. H. P. Furth and P. H. Rutherford, AIP Conf. Proc. 1, 74 (1970).

    Article  ADS  Google Scholar 

  18. V. Arsenin and A. Chuyanov, Sov. Phys. Usp. 20, 736 (1977).

    Article  ADS  Google Scholar 

  19. H. Lashinsky and E. Dewan, AIP Conf. Proc. 1, 199 (1970).

    Article  ADS  Google Scholar 

  20. J. Fife, M. Martínez-Sánchez, and J. Szaboin, in Proceedings of the 33rd AIAA Joint Propulsion Conference, Seattle, WA, 1997, p. 3052.

  21. A. Morozov and V. Savelyev, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev and V. D. Shafranov (Consultant Bureau, New York, 2000), Vol. 21, p. 203.

    Google Scholar 

  22. O. Koshkarov, A. Smolyakov, A. Kapulkin, Y. Raitses, and I. Kaganovich, Phys. Plasmas, 25, 061209 (2018).

    Article  ADS  Google Scholar 

  23. Y. Esipchuk, A. Morozov, G. Tilinin, and A. Trofimov, Sov. Phys. Tech. Phys. 18, 928 (1974).

    ADS  Google Scholar 

  24. A. I. Morozov, in Plasma Accelerators, Ed. by L. A. Artsimovich, S. D. Grishin, G. L. Grozdovskii, L. V. Leskov, A. I. Morozov, A. M. Dorodnov, V. G. Padalka, and M. I. Pergament (Mashinostroenie, Moscow, 1973), p. 85 [in Russian].

    Google Scholar 

  25. J. B. Parker, Y. Raitses, and N. J. Fisch, Appl. Phys. Lett. 97, 091501 (2010).

    Article  ADS  Google Scholar 

  26. J. Carlsson, I. Kaganovich, A. Powis, Y. Raitses, I. Romadanov, and A. Smolyakov, Phys. Plasmas 25, 061201 (2018).

    Article  ADS  Google Scholar 

  27. S. N. Abolmasov, Plasma Sources Sci. Technol. 21, 035006 (2012).

    Article  ADS  Google Scholar 

  28. T. Ito, C. V. Young, and M. A. Cappelli, Appl. Phys. Lett. 106, 254104 (2015).

    Article  ADS  Google Scholar 

  29. V. Nevrovskii, PhD Thesis (Kurchatov Institute, Moscow, 1971).

  30. Y. Shi, Y. Raitses, and A. Diallo, Plasma Sources Sci. Technol. 27, 104006 (2018).

    Article  ADS  Google Scholar 

  31. Y. Raitses and N. Fisch, Phys. Plasmas 8, 2579 (2001).

    Article  ADS  Google Scholar 

  32. A. Smirnov, Y. Raitses, and N. Fisch, J. Appl. Phys. 92, 5673 (2002).

    Article  ADS  Google Scholar 

  33. Y. Raitses, A. Smirnov, and N. Fisch, Appl. Phys. Lett. 90, 221502 (2007).

    Article  ADS  Google Scholar 

  34. A. Smirnov, Y. Raitses, and N. Fisch, J. Appl. Phys. 94, 852 (2003).

    Article  ADS  Google Scholar 

  35. A. Smirnov, Y. Raitses, and N. Fisch, Phys. Plasmas 14, 057106 (2007).

    Article  ADS  Google Scholar 

  36. A. Smirnov, Y. Raitses, and N. Fisch, IEEE Trans. Plasma Sci. 36, 2034 (2008).

    Article  ADS  Google Scholar 

  37. M. McDonald and A. Gallimore, IEEE Trans. Plasma Sci. 39, 2952 (2011).

    Article  ADS  Google Scholar 

  38. M. McDonald, PhD Thesis (University of Michigan, Ann Arbor, MI, 2012).

  39. A. Light, S. Thakur, C. Brandt, Y. Sechrest, G. Tynan, and T. Munsat, Phys. Plasmas 20, 082120 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by DOE. We acknowledge Yuan Shi, Scott Keller, Ahmed Diallo, and Igor Kaganovich for fruitful discussions and Alex Merzhevskiy for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Romadanov.

Additional information

The article is published in the original.

Appendices

APPENDIX

DETAILS OF THE IMAGE PROCESSING TECHNIQUES

Recorded video can be considered as a 3D matrix of image pixel brightness as a function of position and time,

$$I = I(x,y,t),$$

where x and y are pixel column and row, respectively, and t is a time index. There are three main components of the video, which can be identified by looking at it. The first component is the image from the thruster channel itself and the background plasma, which gives some DC level of intensity. The second is oscillations of the intensity of the whole image due to the breathing mode, or m = 0 mode. The third is the azimuthal oscillations of the intensity due to the rotating spoke, or m = 1 mode, which are of the main interest. To filter these oscillations from the DC level and m = 0 mode several steps were done. Stages of image processing are shown in Fig. 15.

Fig. 15.
figure 15

Image processing stages at one time step. From the left to the right: raw image, cut by Rext, removed background, applied mask and removed effect from the breathing mode, and image in polar coordinates.

The scheme of image processing includes the following steps.

1. Find external radius Rext of the channel and the anode cup radius Rint. This is done by the MATLAB function “imfindcircles.”

2. Cut frames by the channel size.

3. Calculate mean DC level of all frames over time to obtain the mean image M, defined as

$$M(x,y) = \frac{1}{{{{N}_{t}}}}\mathop \sum \limits_t I(x,y,t).$$

4. Subtract M(x, y) matrix from each frame. Therefore, by subtracting it from each frame the background intensity is eliminated,

$${{I}_{{{\text{AC}}}}}\left( {x,y,t} \right) = I\left( {x,y,t} \right) - M(x,y).$$

5. Apply circular mask on each frame by setting pixel values to zero within Rint and outside Rext.

6. Split each frame on circles Cit with radius ri and width of one pixel, so RintriRext, and obtain RextRint arrays of pixels.

7. Calculate average intensity of each circle as

$${{c}_{i}} = \frac{1}{{{{N}_{c}}}}\mathop \sum \limits_\theta {{C}_{{it}}}(\theta ).$$

8. Eliminate breathing oscillation effect from each circle by subtracting average intensity ci from each Cit array.

9. Transform each frame to polar coordinates,

$$I\left( {x,y,t} \right) \to I(R,\theta ,~t).$$

10. Because our analysis is focused on identifying the rotational structures, the radial dependence will be neglected. This is accomplished by average pixel intensity along the radius. Therefore, the matrixes Iavg(θ, t) are obtained,

$${{I}_{{{\text{avg}}}}}\left( {\theta ,~t} \right) = \frac{1}{{{{R}_{{{\text{ext}}}}} - {{R}_{{{\text{int}}}}}}}\mathop \sum \limits_{r = {{R}_{{{\text{int}}}}}}^{{{R}_{{{\text{ext}}}}}} I(r,\theta ,~t).$$

11. Such matrices can be combined along time dimension in so-called 2D “spoke surface.” This surface represents variation of pixel intensity in angular direction θ and with time t.

12. In order to determine characteristic frequencies of azimuthal modes, the 2D Fourier transform was applied to it. The particular implementation is based on the built-in “fft” command in MATLAB. Results are shown in Fig. 16.

Fig. 16.
figure 16

(a) Spoke surface. The angled lines correspond to the spoke propagating in azimuthal direction with time. (b) 2D FFT matrix of the spoke surface. This matrix contains a discrete signal for each mode number. One can see that the m = 0 mode is still present even though it was cleaned out of the video. This happens because the breathing mode is much stronger than the azimuthal modes (m = 1).

13. Breathing mode was identified through the Fourier transform of the signal, which was defined as follows:

$$B\left( t \right) = \mathop \sum \limits_{x,y} I\left( {x,y,t} \right).$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romadanov, I., Raitses, Y. & Smolyakov, A. Control of Coherent Structures via External Drive of the Breathing Mode. Plasma Phys. Rep. 45, 134–146 (2019). https://doi.org/10.1134/S1063780X19020156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19020156

Navigation