Skip to main content
Log in

Some features of the streamer belt in the solar corona and at the Earth’s orbit

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The rays of enhanced brightness making up the structure of the coronal-streamer belt can be traced to the lowest atmospheric layers in the Sun, with the angular size remaining nearly constant, d ≈ 2.5° ± 0.5°. This suggests that the physical mechanism generating the slow solar wind in the rays of the streamer belt differs from the mechanism giving rise to the fast solar wind from coronal holes. At distances of R < (4–5) R , the rays of the streamer belt are not radial in the plane of the sky and show deviations toward the corresponding pole. They then become essentially radial at R > (4–5) R . A transverse cross section of streamers in the corona and its continuation into the heliosphere—a plasma sheet—can be represented as two radially oriented, closely spaced rays (d ≈ 2.0°–2.5°) with enhanced density and an angular size of d. We also show that the ray structure of the streamer belt is involved in the development of coronal mass ejections (CMEs). The motion of a small-scale CME occurs within a magnetic flux tube (ray of enhanced brightness) and leads to an explosive increase in its angular size (rapid expansion of the tube). It seems likely that large-scale CMEs are the result of the simultaneous expansion of several magnetic tubes. We suggest that a small-scale CME corresponds to a “plasmoid” (clump of plasma of limited size with its own magnetic field) ejected into the base of a magnetic tube, which subsequently moves away from the Sun along the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Vsekhvyatskii, G. M. Nikol’skii, V. I. Ivanchuk, et al., Solnechnaya korona i korpuskulyarnoe izluchenie v mezhplanetnom prostranstve (Corona and Corpuscular Radiation in Interplanetary Space) (KU, Kiev, 1965) [in Russian].

    Google Scholar 

  2. G. Newkirk, Ann. Rev. Astron. Astrophys. 5, 213 (1967).

    Article  ADS  Google Scholar 

  3. R. A. Howard, M. A. Koomen, D. J. Michels, et al., Synoptic Observations of the Solar Corona during Carrington Rotations 1580–1596, Report UAG-48, World Data Center for Solar—Terrestrial Physics (July 1975).

  4. J. D. Bohlin, Sol. Phys. 12, 240 (1970).

    Article  ADS  Google Scholar 

  5. L. Svalgaard, J. M. Wilcox, and T. L. Duvall, Sol. Phys. 37, 157 (1974).

    Article  ADS  Google Scholar 

  6. N. P. Korzhov, Sol. Phys. 55, 505 (1977)

    Article  ADS  Google Scholar 

  7. R. A. Gulyaev, Sov. Phys. Usp. 35, 1083 (1992).

    Article  Google Scholar 

  8. V. G. Eselevich, J. Geophys. Res. 103, 2021 (1998).

    Article  ADS  Google Scholar 

  9. O. G. Badalyan, Astron. Zh. 68, 602 (1991) [Sov. Astron. 35, 295 (1991)].

    ADS  Google Scholar 

  10. S. Koutchmy and M. Livshits, Space Sci. Rev. 61, 393 (1992).

    Article  ADS  Google Scholar 

  11. V. G. Eselevich and M. V. Eselevich, Sol. Phys. 188, 299 (1999).

    Article  ADS  Google Scholar 

  12. M. V. Eselevich and V. G. Eselevich, Astron. Zh. 81, 757 (2004) [Astron. Rep. 48, 688 (2004)].

    Google Scholar 

  13. L. Strachan, R. Suleiman, A. V. Panasyuk, et al., Astrophys. J. 571, 1008 (2002).

    Article  ADS  Google Scholar 

  14. N. R. Sheeley, Jr., Y.-M. Wang, S. H. Hawley, et al., Astrophys. J. 484, 472 (1997).

    Article  ADS  Google Scholar 

  15. Y.-M. Wang, N. R. Sheeley, Jr., R. A. Howard, et al., Geophys. Res. Lett. 26, 1349 (1999).

    Article  ADS  Google Scholar 

  16. V. G. Eselevich and M. V. Eselevich, Sol. Phys. 203, 165 (2001).

    Article  ADS  Google Scholar 

  17. T. G. Forbes, J. Geophys. Res. 105, 25 153 (2000).

    Google Scholar 

  18. R. M. Illing and A. J. Hundhausen, J. Geophys. Res. 91, 10951 (1986).

    Article  ADS  Google Scholar 

  19. M. V. Eselevich and V. G. Eselevich, Astron. Zh. 82, 79 (2005) [Astron. Rep. 49, 71 (2005)].

    Google Scholar 

  20. V. M. Gubchenko, M. L. Khodachenko, H. K. Biernat, et al., Hvar Obs. Bull. 28, 127 (2004).

    ADS  Google Scholar 

  21. V. G. Eselevich and M. V. Eselevich, Sol. Phys. 197, 101 (2000).

    Article  ADS  Google Scholar 

  22. G. Borrini, J. T. Gosling, S. J. Barne, et al., J. Geophys. Res. 86, 45 659 (1981).

    Article  Google Scholar 

  23. V. G. Eselevich and V. G. Fainshtein, Planet. Space Sci. 40, 105 (1992).

    Article  ADS  Google Scholar 

  24. B. Bavassano, R. Woo, and R. Bruno, Geophys. Res. Lett. 24, 1655 (1997).

    Article  ADS  Google Scholar 

  25. Y.-M. Wang, N. R. Sheeley, Jr., N. R. Walters, et al., Astrophys. J. 496, L165 (1998).

    Article  ADS  Google Scholar 

  26. C. Lacombe, C. Salem, A. Y. Mangeney, et al., Ann. Geophys. 18, 852 (2000).

    Article  ADS  Google Scholar 

  27. V. G. Eselevich and M. V. Eselevich, in Proceedings of the All-Russia Conference Dedicated to the 90th Anniversary of Corr. Member of RAS V.E. Stepanov, Irkutsk, 2003, p. 30.

  28. N. U. Crooker, C. L. Huang, S. M. Lamassa, et al., J. Geophys. Res. A 109, 03107 (2004).

  29. N. U. Crooker, S. W. Kahler, D. E. Larson, et al., J. Geophys. Res. A 109, 03108 (2004).

  30. V. G. Eselevich and M. V. Eselevich, Chin. J. Space Sci. 25, 321 (2005).

    Google Scholar 

  31. V. G. Eselevich and M. A. Filippov, Planet. Space Sci. 34, 1119 (1986).

    Article  ADS  Google Scholar 

  32. M. V. Eselevich and V. G. Eselevich, Astron. Zh. 82, 79 (2005) [Astron. Rep. 49, 71 (2005)].

    Google Scholar 

  33. Y.-M. Wang and N. R. Sheeley, Jr., Astrophys. J. 355, 726 (1990).

    Article  ADS  Google Scholar 

  34. Y.-M. Wang, Astrophys. J. 437, L67 (1994).

    Article  ADS  Google Scholar 

  35. Y.-M. Wang, N. R. Sheeley, Jr., and D. G. Socker, J. Geophys. Res. 105, 25 133 (2000).

    Google Scholar 

  36. V. G. Eselevich and V. G. Fainshtein, Planet. Space Sci. 39, 737 (1991).

    Article  ADS  Google Scholar 

  37. A. Dollfus and M.-J. Martres, Martres, Sol. Phys. 53, 449 (1977).

    Article  ADS  Google Scholar 

  38. S. Koutchmy, Adv. Space Res. 14, 29 (1994).

    Article  ADS  Google Scholar 

  39. K. P. Dere, G. E. Brueckner, R. A. Howard, et al., Sol. Phys. 175, 601 (1997).

    Article  ADS  Google Scholar 

  40. V. G. Eselevich, V. G. Fainshtein, and M. V. Eselevich, Sol. Phys. 200, 259 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.V. Eselevich, V.G. Eselevich, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 9, pp. 837–852.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eselevich, M.V., Eselevich, V.G. Some features of the streamer belt in the solar corona and at the Earth’s orbit. Astron. Rep. 50, 748–761 (2006). https://doi.org/10.1134/S1063772906090083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772906090083

PACS numbers

Navigation