Skip to main content
Log in

Circulatory system in chicken skeletal muscle in the second half of embryogenesis: Shape, blood flow, and vascular reactivity

  • Physiology of Development
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

A restructuring of the capillary bed—from the embryonic structure with a three-dimensional network of wide and long protocapillaries to the mature structure with high density of thin and short capillaries along the fibers—has been demonstrated in the chick skeletal muscle on embryonic days 10–19 by morphometric analysis. In this case, the specific blood flow and capillary luminal area per cm3 of the muscle remained unaltered, while the blood volume in it significantly dropped. The response of muscle circulation to nitroprusside (increase) and noradrenaline (decrease) appeared in 19-day-old embryos, but this response could develop only under conditions of initially low or high blood flow, respectively. We propose that the arterial trunk lumen area to the total capillary lumen area remains constant as the intraorganic circulation is formed, which provides for the required linear blood velocity in capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baranov, V.I., Belichenko, V.M., and Shoshenko, K.A., Oxygen Diffusion Coefficient in Isolated Chicken Red and White Skeletal Muscle Fibers in Ontogenesis, Microvasc. Res., 2000, vol. 60, pp. 168–176.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, R. and Meuer, H.-J., Blood Oxygen Transport in the Early Avian Embryo, Physiol. Rev., 1992, vol. 72, pp. 941–965.

    PubMed  CAS  Google Scholar 

  • Beck, L. and d’Amore, P.A., Vascular Development: Cellular and Molecular Regulation, FASEB J., 1997, vol. 11, pp. 365–373.

    PubMed  CAS  Google Scholar 

  • Belichenko, V.M., Korostyshevskaya, I.M., and Shoshenko, K.A., On the Mechanisms of Changes in Blood Flow Distribution between Organs in Hens during Ontogenesis, Ross. Fiziol. Zh. im. I.M. Sechenova, 2003, vol. 89, issue 12, pp. 1551–1559.

    PubMed  CAS  Google Scholar 

  • Belichenko, V.M., Grigor’eva, T.A., Korostyshevskaya, I.M., and Shoshenko, K.A., New Data Shedding Light on the Mechanisms of Circulatory System Development in Homeotherms, Byul. SO Ross. Akad. Med. Nauk, 2004, vol. 112, no. 2, pp. 114–118.

    Google Scholar 

  • Belichenko, V.M., Korostyshevskaya, I.M., Maksimov, V.F., and Shoshenko, K.A., Development of the Mitochondrial Apparatus and Blood Supply of Skeletal Muscle Fibers during Ontogenesis of Domestic Fowl, Ontogenez, 2005, vol. 36, no. 2, pp. 135–144.

    PubMed  CAS  Google Scholar 

  • Belichenko, V.M., Grigor’eva, T.A., and Shoshenko, K.A., The Muscular Blood Flow in Rats in Ontogenesis as Measured by the Needle Probe Laser Doppler Flowmeter LAKK-01, Ross. Fiziol. Zh. im. I.M. Sechenova, 2007, vol. 93, issue 6, pp. 655–660.

    PubMed  CAS  Google Scholar 

  • Cines, D.B., Pollak, E.S., Buck, C.A., et al., Endothelial Cells in Physiology and the Pathophysiology of Vascular Disorders, Blood., 1998, vol. 91, pp. 3527–3561.

    PubMed  CAS  Google Scholar 

  • Coffin, J.D. and Pool, T.J., Embryonic Vascular Development: Immunohistochemical Identification of the Origin and Subsequent Morphogenesis of the Major Vessel Primordial in Quail Embryos, Development, 1988, vol. 102, pp. 735–748.

    PubMed  CAS  Google Scholar 

  • Crossley, H.D. and Altimiras, J., Ontogeny of Cholinergic and Adrenergic Cardiovascular Regulation in the Domestic Chicken (Gallus gallus), Am. J. Physiol., 2000, vol. 279, pp. R1091–R1098.

    CAS  Google Scholar 

  • Davis, G.E., Bayless, K.J., and Mavila, A., Molecular Basis of Endothelial Cell Morphogenesis in Three-Dimensional Extracellular Matrices, Anat. Rec., 2002, vol. 268, pp. 252–275.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, J.E., III, Kelley, R.W., and Patterson, C., Mechanism of Endothelial Differentiation in Embryonic Vasculogenesis, Arteriorscler. Thromb Vasc. Biol., 2005, vol. 25, pp. 2246–2254.

    Article  CAS  Google Scholar 

  • Folkov, B. and Nil, E., Krovoobrashchenie (Blood Circulation), Moscow: Meditsina, 1978.

    Google Scholar 

  • Girard, H., Adrenergic Sensitivity of Circulation in the Chick Embryo, Am. J. Physiol., 1973, vol. 224, pp. 461–469.

    PubMed  CAS  Google Scholar 

  • Hu, N. and Clark, E.B., Hemodynamics of the Stage 12 to Stage 29 Chick Embryo, Circ. Res., 1989, vol. 65, pp. 1665–1670.

    PubMed  CAS  Google Scholar 

  • Jaffee, O.C., Rheological Aspects of Development of Blood Flow Patterns in the Chick Embryo Heart, Biorheology, 1966, vol. 3, pp. 59–62.

    PubMed  CAS  Google Scholar 

  • Korostyshevskaya, I.M., Maksimov, V.F., and Baranov, V.I., Multifunctional morphology of the chick chorioallantoic membrane, Ross. Fiziol. Zh. im. I.M. Sechenova, 2006, vol. 92, no. 7, pp. 889–902.

    Google Scholar 

  • Kurjiaka, D.T. and Segal, S.S., Autoregulation during Pressor Response Elevates Wall Shear Rate in Arterioles, J. Appl. Physiol., 1996, vol. 80, pp. 598–604.

    PubMed  CAS  Google Scholar 

  • LaRue, A.C., Mironov, V.A., Argraves, W.S., et al., Patterning of Embryonic Blood Vessels, Devel. Dyn., 2003, vol. 228, pp. 21–29.

    Article  Google Scholar 

  • le Noble, F.A.C., Ruijtenbeek, K., Gommers, S., et al., Contractile and Relaxing Reactivity in Carotid and Femoral Arteries of Chicken Embryos, Am. J. Physiol., 2000, vol. 278, pp. H1261–H1268.

    Google Scholar 

  • McCurdy, M.R., Colleran, P.N., Muller-Delp, J., and Delp, M.D., Selected Contribution: Effects of Fiber Composition and Hindlimb Unloading on the Vasodilator Properties of Skeletal Muscle Arterioles, J. Appl. Physiol., 2000, vol. 89, pp. 398–405.

    PubMed  CAS  Google Scholar 

  • Mulder, A.M., van Golde, J.C., Prinzer, F.W., and Blanco, C.E., Cardiac Output Distribution in Response to Hypoxia in the Embryo in the Second Half of the Incubation Time, J. Physiol., 1998, vol. 508, pp. 281–287.

    PubMed  CAS  Google Scholar 

  • Muller-Delp, J., Spier, S.A., Ramsey, M.W., et al., Effects of Aging on Vasoconstrictor and Mechanical Properties of Rat Skeletal Muscle Arterioles, Am. J. Physiol. Heart Circ. Physiol., 2001, vol. 282, pp. H1843–H1854.

    Google Scholar 

  • Murray, B. and Wilson, D.J., Muscle Patterning, Differentiation and Vascularisation in the Chick Wing Bud, J. Anat., 1997, vol. 190, pp. 261–273.

    Article  PubMed  Google Scholar 

  • Nicosia, R.F. and Villaschi, S., Rat Aortic Smooth Muscle Cells Become Pericytes during Angiogenesis in vitro, Lab. Invest., 1995, vol. 73, pp. 658–666.

    PubMed  CAS  Google Scholar 

  • Ogata, N., Morphological and Cytochemical Features of Fiber Types in Vertebrate Skeletal Muscle, Crit. Rev. Anat. Cell Biol., 1988, vol. 1, pp. 229–275.

    Google Scholar 

  • Rol’nik, V.V., Biologiya embrional’nogo razvitiya ptits (Biology of Avian Embryonic Development), Leningrad: Nauka, 1968.

    Google Scholar 

  • Ruberte, J., Carretero, A., Navarro, M., et al., Morphogenesis of Blood Vessels in the Head Muscles of Avian Embryo: Spatial, Temporal, and VEGF Expression Analyses, Devel. Dyn., 2003, vol. 227, pp. 470–483.

    Article  CAS  Google Scholar 

  • Ruijtenbeek, K., de Mey, J.G.R., et al., The Chicken Embryo in Developmental Physiology of the Cardiovascular System: A Traditional Model with New Possibilities, Am. J. Physiol., 2002, vol. 283, pp. R549–R551.

    CAS  Google Scholar 

  • Shoshenko, K.A., Krovenosnye kapillyary (Blood Capillaries), Novosibirsk: Nauka, 1975.

    Google Scholar 

  • Shoshenko, K.A., Nosova, M.N., and Korostyshevskaya, I.M., Skeletal Muscle Blood Bed in Growing Rats, Ross. Fiziol. Zh. im. I.M. Sechenova, 2004, vol. 90,issue 12, pp. 1542–1554.

    PubMed  CAS  Google Scholar 

  • Tazawa, H., Measurement of Blood Pressure of Chick Embryo with an Implanted Needle Catheter, J. Appl. Physiol., 1981, vol. 51, pp. 1023–1026.

    PubMed  CAS  Google Scholar 

  • Topouzis, S. and Majesky, M.W., Smooth Muscle Lineage Diversity in the Chick Embryo. Two Types Aortic Smooth Muscle Cell Differ in Growth and Receptor-Mediated Transcriptional Responses to Transforming Growth Factor-β Devel. Biol., 1996, vol. 178, pp. 430–445.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Shoshenko.

Additional information

Original Russian Text © V.M. Belichenko, K.A. Shoshenko, 2009, published in Ontogenez, 2009, Vol. 40, No. 2, pp. 126–135.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belichenko, V.M., Shoshenko, K.A. Circulatory system in chicken skeletal muscle in the second half of embryogenesis: Shape, blood flow, and vascular reactivity. Russ J Dev Biol 40, 95–103 (2009). https://doi.org/10.1134/S1062360409020052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360409020052

Key words

Navigation