Skip to main content
Log in

Therapeutic effect of the NMDA antagonist MK-801 on low-level laser induced retinal injury

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

The aim of this article was to explore the mechanism of injury in rat retina after constant low-level helium-neon (He-Ne) laser exposure and therapeutic effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, on laser-induced retinal injury. He-Ne laser lesions were created in the central retina of adult Wistar Kyoto rats and were followed immediately by intraperitoneal injection of MK-801 (2 mg/kg) or saline, macroscopical and microscopical lesion were observed by funduscope and light microscope. Ultrastructural changes of the degenerating cells were examined by electron microscopy. Photoreceptor apoptosis was evaluated by TdT-mediated dUTP nick end-labeling (TUNEL). mRNA levels were measured by in situ hybridization and NMDA receptor expression was determined by immunohistochemistry. Laser induced damage was histologically quantified by image-analysis morphometry. Electroretinograms (ERGs) were recorded at different time point after the cessation of exposure to constant irradiation. There was no visible bleeding, exudation or necrosis under funduscope. TUNEL and electron microscopy showed photoreceptor apoptosis after irradiation. MK-801-treated animals had significantly fewer TUNEL-positive cells in the photoreceptors than saline-treated animals after exposure to laser. In situ hybridization (ISH) showed that the NMDAR mRNA level of MK-801-treated rats decreased in the inner plexiform layer 6 h after the cessation of exposure to constant irradiation when compared with that of saline-treated rats. So did Immunohistochemistry (IHC). Electroretinogram showed that b-wave amplitudes of MK-801-treated group were higher than that of saline-treated group after laser exposure. These findings suggest that Low level laser may cause the retinal pathological changes under given conditions. High expression of NMDAR is one of the possible mechanisms causing experimental retinal laser injury of rats. MK-801 exhibits the therapeutic effect due to promote the recovery of structure and function of injured retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zhu, Z. H. Guo, and T. R. Chen, The Collected Works. of Physiatrics (Scientific Techn. Documents Publ., Beijing, 2001).

    Google Scholar 

  2. C. F. Oliveira, J. Hebling, P. P. C. Souza, N. T. Sacono, F. R. Lessa, R. F. Z. Lizarelli, and C. A. S. Costa, Laser Phys. Lett. 5, 680 (2008).

    Article  Google Scholar 

  3. G. E. P. Villa, A. B. C. E. B. Catirse, R. C. C. Lia, and R. F. Z. Lizarelli, Laser Phys. Lett. 4, 690 (2007).

    Article  Google Scholar 

  4. D. H. Sliney, Opt. Photonics News 8, 31 (1997).

    Article  ADS  Google Scholar 

  5. Y. Solberg, G. Dubinski, M. Tchirkov, M. Belkin, and M. Rosner, Surv. Ophthalmol. 44, 85 (1999).

    Article  Google Scholar 

  6. W. Hu, M. H. Criswell, A. Ottlecz, T. L. Cornell, R. P. Danis, G. N. Lambrou, and T. A. Ciulla, Retina. 25, 1054 (2005).

    Article  Google Scholar 

  7. H. She, T. Nakazawa, A. Matsubara, T. Hisatomi, T. A. Young, N. Michaud, E. Connolly, A. Hafezi-Moghadam, E. S. Gragoudas, and J. W. Miller, Invest. Ophthalmol. Vis. Sci. 48, 2268 (2007).

    Article  Google Scholar 

  8. Y. Chu, M. F. Humphrey, V. V. Alder, and I. J. Constable, Aust. N. Z. J. Ophthalmol. 26, 87 (1998).

    Google Scholar 

  9. X. Shi, I. Semkova, P. S. Müther, S. Dell, N. Kociok, and A. M. Joussen, Exp. Eye Res. 83, 1325 (2006).

    Article  Google Scholar 

  10. C. M. Lai, W. Y. Shen, I. J. Constable, and P. E. Rakoczy, Curr. Eye Res. 19, 411 (1999).

    Article  Google Scholar 

  11. F. Rolling, Gene Ther. 11, 26 (2004).

    Article  Google Scholar 

  12. N. V. Pak, O. V. Podgornyi, M. A. Aleksandrova, E. V. Chentsova, A. N. Ivanov, O. N. Golubeva, R. A. Poltavtseva, M. V. Marey, and G. T. Sukhikh, Bull. Exp. Biol. Med. 138, 525 (2004).

    Article  Google Scholar 

  13. K. Sato, K. Morimoto, and M. Okamoto, Brain Res. 463, 12 (1988).

    Article  Google Scholar 

  14. B. L. Trommer and J. F. Pasternak, Brain Res. Dev. Brain Res. 53, 248 (1990).

    Article  Google Scholar 

  15. W. E. Müller, H. Ushijima, H. C. Schröder, J. M. Forrest, W. F. Schatton, P. G. Rytik, and M. Heffner-Lauc, Eur. J. Pharmacol. 246, 241 (1993).

    Google Scholar 

  16. C. L. Liang, L. C. Yang, K. Lu, H. C. Hsu, C. L. Cho, S. D. Chen, H. Y. Huang, and H. J. Chen, J. Neurotrauma. 20, 195 (2003).

    Article  Google Scholar 

  17. B. T. Stuiver, B. R. Douma, R. Bakker, C. Nyakas, and P. G. Luiten, Neurodegeneration 5, 153 (1996).

    Article  Google Scholar 

  18. I. Glezer, C. D. Munhoz, E. M. Kawamoto, T. Marcourakis, M. C. Avellar, and C. Scavone, Neuropharmacology 45, 1120 (2003).

    Article  Google Scholar 

  19. S. A. Lipton, N. J. Sucher, P. K. Kaiser, and E. B. Dreyer, Neuron. 7, 111 (1991).

    Article  Google Scholar 

  20. C. K. N. Patel and O. R. Wood, Lasers in Ophthalmic Surgery: Fundamentals of Lasers (Blackwell Sci., Cambridge, 1995).

    Google Scholar 

  21. Y.-D. Kim, S.-S. Kim, D.-S. Hwang, G.-C. Kim, S.-H. Shin, U.-K. Kim, J.-R. Kim, and I.-K. Chung, Laser Phys. Lett. 4, 681 (2007).

    Article  Google Scholar 

  22. Y. Barkana and M. Belkin, Surv. Ophthalmol. 44, 459 (2000).

    Article  Google Scholar 

  23. E. L. Nussbaum, L. Lilge, and T. Mazzulli, J. Clin. Laser Med. Surg. 21, 283 (2003).

    Article  Google Scholar 

  24. Y.-D. Kim, S.-S. Kim, T.-G. Kim, G.-C. Kim, S.-B. Park, and W.-S. Son, Laser Phys. Lett. 4, 616 (2007).

    Article  Google Scholar 

  25. M. Watanabe, M. Mishina, and Y. Inoue, Brain Res. 634, 328 (1994).

    Article  Google Scholar 

  26. F. Hafezi, J. J. Reinboth, A. Wenzel, K. Munz, and C. E. Remé, Klin Monatsbl Augenheilkd. 212, 469 (1998).

    Article  Google Scholar 

  27. Y. Zhang, P. Deng, Y. Li, and Z. C. Xu, J. Neurophysiol. 95, 1537 (2006).

    Article  Google Scholar 

  28. P. R. Heath and P. J. Shaw, Muscle Nerve 26, 438 (2002).

    Article  Google Scholar 

  29. J. S. Hahn, E. Aizenman, and S. A. Lipton, Proc. Natl. Acad. Sci. USA. 85, 6556 (1988).

    Article  ADS  Google Scholar 

  30. M. Ankarcrona, J. M. Dypbukt, E. Bonfoco, B. Zhivotovsky, S. Orrenius, S. A. Lipton, and P. Nicotera, Neuron. 15, 961 (1995).

    Article  Google Scholar 

  31. G. M. Cohen, Biochem. J. 31, 251 (1997).

    Google Scholar 

  32. M. T. Perez, K. Arnér, and A. Håkansson, Neurochem. Int. 31, 251 (1997).

    Article  Google Scholar 

  33. C. Jatzke, J. Watanabe, and L. P. Wollmuth, J. Physiol. 538, 25 (2002).

    Article  Google Scholar 

  34. C. Ikonomidou, Y. Qin, J. Labruyere, C. Kirby, and J. W. Olney, Pediatr. Res. 39, 1020 (1996).

    Article  Google Scholar 

  35. Q. Sun, V. E. Ooi, and S. O. Chan, Exp. Brain Res. 138, 37 (2001).

    Article  Google Scholar 

  36. C. Ikonomidou, F. Bosch, M. Miksa, P. Bittigau, J. Vöckler, K. Dikranian, T. I. Tenkova, V. Stefovska, L. Turski, and J. W. Olney, Science 283, 70 (1999).

    Article  ADS  Google Scholar 

  37. A. Sharma and S. Kumar, Science 288, 977 (2000).

    Google Scholar 

  38. V. Jevtovic-Todorovic, R. E. Hartman, Y. Izumi, N. D. Benshoff, K. Dikranian, C. F. Zorumski, J. W. Olney, and D. F. Wozniak, J. Neurosci. 23, 876 (2003).

    Google Scholar 

  39. S. Jander, M. Schroeter, and G. Stoll, J. Neuroimmunol. 109, 181 (2000).

    Article  Google Scholar 

  40. S. Jander, M. Schroeter, O. Peters, O. W. Witte, and G. Stoll, J. Cereb. Blood Flow Metab. 21, 218 (2001).

    Article  Google Scholar 

  41. J. L. Madrigal, M. A. Moro, I. Lizasoain, P. Lorenzo, A. Castrillo, L. Bosca, and J. C. Leza, J. Neurochem. 76, 532 (2001).

    Article  Google Scholar 

  42. C. K. Joo, J. S. Choi, H. W. Ko, K. Y. Park, S. Sohn, M. H. Chun, Y. J. Oh, and B. J. Gwag, Invest. Ophthalmol. Vis. Sci. 40, 713 (1999).

    Google Scholar 

  43. D. I. Orellana, R. A. Quintanilla, C. Gonzalez-Billault, and R. B. Maccioni, Neurotox. Res. 8, 295 (2005).

    Article  Google Scholar 

  44. A. Stepulak, M. Sifringer, W. Rzeski, S. Endesfelder, A. Gratopp, E. E. Pohl, P. Bittigau, U. Felderhoff-Mueser, A. M. Kaindl, C. Bührer, H. H. Hansen, M. Stryjecka-Zimmer, L. Turski, and C. Ikonomidou, Proc. Natl. Acad. Sci. USA. 102, 15605 (2005).

    Google Scholar 

  45. M. I. Domínguez, J. M. Blasco-Ibáñez, C. Crespo, J. Nacher, A. I. Marqués-Marí, and F. J. Martínez-Guijarro, Epilepsia 47, 887 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -T. Dou.

Additional information

Original Text © Astro, Ltd., 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, W.H., Wu, J., Chen, P. et al. Therapeutic effect of the NMDA antagonist MK-801 on low-level laser induced retinal injury. Laser Phys. 19, 493–501 (2009). https://doi.org/10.1134/S1054660X09030232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09030232

PACS numbers

Navigation