Skip to main content
Log in

Oxygen Nonstoichiometry and Transport Properties of Mixed-Conducting Ce0.6–xLa0.4Pr x O2–δ

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The oxygen nonstoichiometry and electrical conductivity of fluorite-type solid solutions Ce0.6‒xLa0.4Pr x O2–δ (x = 0.1–0.2) were studied in the oxygen partial pressure range 10–19–0.35 atm at 1023–1223 K. It was confirmed that the Pr4+/3+ and Ce4+/3+ redox pairs, which determine the concentration of p- and n-type electron charge carriers, play the dominant roles under oxidizing and reducing conditions, respectively. The conductivity vs. charge carrier concentration dependencies in these conditions are almost linear. Increasing praseodymium content leads to a substantially higher hole conductivity and an expanded range of the oxygen nonstoichiometry variations at high oxygen partial pressures. Under reducing conditions when praseodymium cations become trivalent opposite trends are observed on doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kharton, V.V., Figueiredo, F.M., Navarro, L., Naumovich, E.N., Kovalevsky, A.V., Yaremchenko, A.A., Viskup, A.P., Carneiro, A., Marques, F.M.B., and Frade, J.R., Ceria-based materials for solid oxide fuel cells, J. Mater. Sci., 2001, vol. 36, p. 1105.

    Article  CAS  Google Scholar 

  2. Trovarelli, A., Catalytic properties of ceria and CeO2-containing materials, Catal. Rev., 2006, vol. 38, p. 439.

    Article  Google Scholar 

  3. Mogensen, M., Sammes, N.M., and Tompsett, G.A., Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, 2000, vol. 129, p. 63.

    Article  CAS  Google Scholar 

  4. Elyassi, B., Rajabbeigi, N., Khodadadi, A., Mohajerzadeh, S.S., and Sahimi, M., An yttria-doped ceriabased oxygen sensor with solid-state reference, Sens. Actuators, B, 2004, vol. 103, p. 178.

    Article  CAS  Google Scholar 

  5. Bernal, S., Blanco, G., Cauqui, M.A., Corchado, M.P., Larese, C., Pintado, J.M., and Rodriguez-Izquierdo, J.M., Cerium–terbium mixed oxides as alternative components for three-way catalysts: a comparative study of Pt/CeTbOx and Pt/CeO2 model systems, Catal. Today, 1999, vol. 53, p. 607.

    Article  CAS  Google Scholar 

  6. Zhao, S. and Gorte, R.J., A comparison of ceria and Sm-doped ceria for hydrocarbon oxidation reactions, Appl. Catal. A, 2004, vol. 277, p 129.

    Article  CAS  Google Scholar 

  7. Shuk, P. and Greenblatt, M., Hydrothermal synthesis and properties of mixed conductors based on Ce1‒xPrxO2 †δ solid solutions, Solid State Ionics, 1999, vol. 116, p. 217.

    Article  CAS  Google Scholar 

  8. Ramasamy, D., Shaula, A.L., Gómez-Herrero, A., Kharton, V.V., and Fagg, D.P., Oxygen permeability of mixed-conducting Ce0.8Tb0.2O2 †δ membranes: Effects of ceramic microstructure and sintering temperature, J. Membr. Sci., 2015, vol. 475, p. 414.

    Article  CAS  Google Scholar 

  9. Fagg, D.P., Kharton, V.V., Shaula, A., Marozau, I.P., and Frade, J.R., Mixed conductivity, thermal expansion, and oxygen permeability of Ce(Pr,Zr)O2 †δ, Solid State Ionics, 2005, vol. 176, p. 1723.

    Article  CAS  Google Scholar 

  10. Fagg, D.P., Marozau, I.P., Shaula, A.L., Kharton, V.V., and Frade, J.R., Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8 †xPr0.2O2 †δ, x = 0, 0.15, 0.2, J. Solid State Chem., 2006, vol. 179, p. 3347.

    Article  CAS  Google Scholar 

  11. Chatzichristodoulou, C. and Hendriksen, P.V., Oxygen nonstoichiometry and defect chemistry modeling of Ce0.8Pr0.2O2 †δ, J. Electrochem. Soc., 2010, vol. 157, p. B481.

    Article  CAS  Google Scholar 

  12. Bishop, S.R., Stefanik, T.S, and Tuller, H.L., Defects and transport in PrxCe1 †xO2 †δ: Composition trends, J. Mater. Res., 2012, vol. 27, p. 2009.

    Article  CAS  Google Scholar 

  13. Bishop, S.R., Stefanik, T.S, and Tuller H.L., Electrical conductivity and defect equilibria of Pr0.1Ce0.9O2 †δ, Phys. Chem. Chem. Phys., 2011. vol. 13, p. 10165.

    Article  CAS  PubMed  Google Scholar 

  14. Fagg, D.P., Frade, J.R., Kharton, V.V., and Marozau, I.P., The defect chemistry of Ce(Pr, Zr)O2 †δ, J. Solid State Chem., 2006, vol. 179, p. 1469.

    Article  CAS  Google Scholar 

  15. Kharton, V.V., Viskup, A.P., Figueiredo, F.M., Naumovich, E.N., Yaremchenko, A.A., and Marques, F.M.B., Electron–hole conduction in Pr-doped Ce(Gd)O2 †δ by faradaic efficiency and emf measurements, Electrochim. Acta., 2001, vol. 46, p. 2879.

    Article  CAS  Google Scholar 

  16. Schmale, K., Grünebaum, M., Janssen, M., Baumann, S., Schulze-Küppers, F., and Wiemhöfer, H.-D., Electronic conductivity of Ce0.8Gd0.2 †xPrxO2 †δ and influence of added CoO, Phys. Status Solidi B, 2011, vol. 248, p. 314.

    Article  CAS  Google Scholar 

  17. Ivanov, A.I., Zagitova, A.A., Bredikhin, S.I., and Kharton, V.V., Sintez i smeshannaya provodimost’ Ce1‒x †yLaxPryO2 †δ dlya kataliticheski aktivnykh zashchitnykh podsloev tverdookisnykh toplivnykh elementov, Al’tern. Energ. Ekol., 2013, no. 20 (160), p. 15.

    Google Scholar 

  18. Bishop, S.R., Duncan, K.L., and Wachsman, E.D., Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide, Electrochim. Acta, 2009, vol. 54, p. 1436.

    Article  CAS  Google Scholar 

  19. Shoko, E., Smith, M.F., and McKenzie, R.H., Charge distribution and transport properties in reduced ceria phases: A review, J. Phys. Chem. Solids, 2011, vol. 72, p. 1482.

    Article  CAS  Google Scholar 

  20. Otake, T., Yugami, H., Yashiro, K., Nigara, Y., Kawada, T., and Mizusaki, J., Nonstoichiometry of Ce1 †xYxO2 †0.52 †δ (x = 0.1, 0.2), Solid State Ionics, 2003, vol. 161, p. 181.

    Article  CAS  Google Scholar 

  21. Naik, I.K. and Tien, T.Y., Small-polaron mobility in nonstoichiometric cerium dioxide, J. Phys. Chem. Solids, 1978, vol. 39, p. 311.

    Article  CAS  Google Scholar 

  22. Tuller, H.L. and Nowick, A.S., Small polaron electron transport in reduced CeO2 single crystals, J. Phys. Chem. Solids, 1978, vol. 38, p. 859.

    Article  Google Scholar 

  23. Wei-Ping, G., Rui, Z., and Zhong-Sheng, C., Thermodynamic modelling and applications of Ce−La−O phase diagram, Trans. Nonferrous Met. Soc. China, 2011, vol. 21, p. 2671.

    Article  CAS  Google Scholar 

  24. Wan, J., Goodenough, J.B., and Zhu, J.H., Nd2‒xLaxNiO4 + δ, a mixed ionic/electronic conductor with interstitial oxygen, as a cathode material, Solid State Ionics, 2007, vol. 178, p. 281.

    Article  CAS  Google Scholar 

  25. Huang, K., Wan, J.-H., and Goodenough, J.B., Increasing power density of LSGM-based solid oxide fuel cells using new anode materials, J. Electrochem. Soc., 2001, vol. 148, p. A788.

    Article  CAS  Google Scholar 

  26. Wan, J.-H., Yan, J.-Q., and Goodenough, J.B., LSGM-based solid oxide fuel cell with 1.4 W/cm2 power density and 30 day long-term stability, J. Electrochem. Soc., 2005, vol. 152, p. A1511.

    Article  CAS  Google Scholar 

  27. Kuritsyna, I., Sinitsyn, V., Melnikov, A., Fedotov, Yu., Tsipis, E., Viskup, A., Bredikhin, S., and Kharton, V., Oxygen exchange, thermochemical expansion and cathodic behavior of perovskite-like Sr0.7Ce0.3MnO3 †δ, Solid State Ionics, 2014, vol. 262, p. 349.

    Article  CAS  Google Scholar 

  28. Kuritsyna, I.E., Sinitsyn, V.V., Fedotov, Yu.S., Bredikhin, S.I., Tsipis, E.V., and Kharton, V.V., Stability and functional properties of Sr0.7Ce0.3MnO3 †δ as cathode material for solid oxide fuel cells, Russ. J. Electrochem., 2014, V. 50, p. 713.

    Article  CAS  Google Scholar 

  29. Patrakeev, M.V., Leonidov, I.A., and Kozhevnikov, V.L., Applications of coulometric titration for studies of oxygen non-stoichiometry in oxides, J. Solid State Electrochem., 2011, vol. 15, p. 931.

    Article  CAS  Google Scholar 

  30. Patrakeev, M.V., Mitberg, E.B., Lakhtin, A.A., Leonidov, I.A., Kozhevnikov, V.L., Kharton, V.V., Avdeev, M., and Marques, F.M.B., Oxygen nonstoichiometry, conductivity, and Seebeck coefficient of La0.3Sr0.7Fe1‒xGaxO2.65 + δ perovskites, J. Solid State Chem., 2002, vol. 167, p. 203.

    Article  CAS  Google Scholar 

  31. Kharton, V.V. and Marques, F.M.B., Interfacial effects in electrochemical cells for oxygen ionic conduction measurements I. The e.m.f. method, Solid State Ionics, 2001, vol. 140, p. 381.

    Article  CAS  Google Scholar 

  32. Sato, H., Hashimoto, S., Nakamura, T., Yashiro, K., Amezawa, K., and Kawada, T., Oxygen nonstoichiometry of Ce0.6La0.4O2 †δ, ECS Trans., 2013, vol. 57, p. 1125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ivanov.

Additional information

Original Russian Text © A.I. Ivanov, V.A. Kolotygin, M.V. Patrakeev, A.A. Markov, S.I. Bredikhin, V.V. Kharton, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 6, pp. 561–569.

Presented at the IV All-Russian Conference “Fuel Cells and Fuel Cell based Power Plants” (with international participation) June 25‒29, 2017, Suzdal, Vladimir region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.I., Kolotygin, V.A., Patrakeev, M.V. et al. Oxygen Nonstoichiometry and Transport Properties of Mixed-Conducting Ce0.6–xLa0.4Pr x O2–δ. Russ J Electrochem 54, 486–492 (2018). https://doi.org/10.1134/S1023193518060058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518060058

Keywords

Navigation