Skip to main content
Log in

Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The review considers the roles of root and shoot tissues in transport and accumulation of heavy metals in plants of two contrast groups, i.e., excluders and hyperaccumulators. The regularities in distribution of cadmium, lead, nickel, and strontium are summarized. Effects of other cations, calcium in particular, on accumulation and distribution of heavy metals are analyzed. Specific patterns of metal distribution in hyperaccumulator plants are discussed together with morphological and functional features underlying the ability of plants to accumulate heavy metals in the aboveground organs. Based on the data available, the root and shoot tissues are classified according to their roles in transport and distribution of the metals examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, A.J.M., Accumulators and Excluders-Strategies in Response of Plants to Heavy Metals, J. Plant Nutr., 1981, vol. 3, pp. 643–654.

    Article  CAS  Google Scholar 

  2. Kabata-Pendias, A. and Pendias, H., Trace Elements in Soils and Plants, Boca Raton: CRC, 1984.

    Google Scholar 

  3. Alekseeva-Popova, N.V., Cellular and Molecular Mechanisms of Plant Tolerance to Heavy Metals, Ustoichivost’ k tyazhelym metallam dikorastushchikh vidov (Tolerance to Heavy Metals in Wild-Grown Species), Alekseeva-Popova, N.V., Ed., Leningrad: Lenuprizdat, 1991.

    Google Scholar 

  4. Temp, G.A., Nickel in Plants as Related to Its Toxicity, Ustoichivost’ k tyazhelym metallam dikorastushchikh vidov (Tolerance to Heavy Metals in Wild-Grown Species), Alekseeva-Popova, N.V., Ed., Leningrad: Lenuprizdat, 1991.

    Google Scholar 

  5. Metal Ions in Biological Systems, Concepts on Metal Ion Toxicity, Singel, H. and Singel, A., Eds., New York: Marcel Dekker, 1986.

    Google Scholar 

  6. Phytoremediation of Toxic Metals Using Plants to Clean up the Environment, Raskin, I. and Ensley, B.D., Eds., New York: John Wiley and Sons, 2000.

    Google Scholar 

  7. Seregin, I.V. and Ivanov, V.B., Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants, Russ. J. Plant Physiol., 2001, vol. 48, pp. 523–544.

    Article  CAS  Google Scholar 

  8. Hall, J.L., Cellular Mechanisms for Heavy Metal Detoxification and Tolerance, J. Exp. Bot., 2002, vol. 53, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  9. Yang, X., Feng, Y., He, Z., and Stoffella, P.J., Molecular Mechanisms of Heavy Metal Hyperaccumulation and Phytoremediation, J. Trace Elem. Med. Biol., 2005, vol. 18, pp. 339–353.

    Article  CAS  PubMed  Google Scholar 

  10. Seregin, I.V. and Kozhevnikova, A.D., Physiological Role of Nickel and Its Toxic Effects on Higher Plants, Russ. J. Plant Physiol., 2006, vol. 53, pp. 257–277.

    Article  CAS  Google Scholar 

  11. Seregin, I.V. and Ivanov, V.B., Histochemical Investigation of Cadmium and Lead Distribution in Plants, Russ. J. Plant Physiol., 1997, vol. 44, pp. 791–796.

    CAS  Google Scholar 

  12. Seregin, I.V., Kozhevnikova, A.D., Kazyumina, E.M., and Ivanov, V.B., Nickel Toxicity and Distribution in Maize Roots, Russ. J. Plant Physiol., 2003, vol. 50, pp. 711–718.

    Article  CAS  Google Scholar 

  13. Seregin, I.V. and Kozhevnikova, A.D., Strontium Transport, Distribution, and Toxic Effects on Maize Seedling Growth, Russ. J. Plant Physiol., 2004, vol. 51, pp. 215–221.

    Article  CAS  Google Scholar 

  14. Severne, B.C., Nickel Accumulation by Hybanthus floribundus, Nature, 1974, vol. 248, pp. 807–808.

    Article  CAS  PubMed  Google Scholar 

  15. Nabais, C., Freitas, H., Hagemeyer, J., and Breckle, S.-W., Radial Distribution of Ni in Stemwood of Quercus ilex L. Trees Grown on Serpentine and Sandy Loam (Umbric leptosol) Soils of NE-Portugal, Plant Soil, 1996, vol. 183, pp. 181–185.

    Article  CAS  Google Scholar 

  16. Heath, S.M., Southworth, D., and D’Allura, J.A., Localization of Nickel in Epidermal Subsidiary Cells of Leaves of Thlaspi montanum var. siskiyouense (Brassicaceae) Using Energy-Dispersive X-Ray Microanalysis, Int. J. Plant Sci., 1997, vol. 158, pp. 184–188.

    Article  CAS  Google Scholar 

  17. Sagner, S., Kneer, R., Wanner, G., Cosson, J.-P., Deus-Neumann, B., and Zenk, M.H., Hyperaccumulation, Complexation and Distribution of Nickel in Sebertia acuminata, Phytochemistry, 1998, vol. 47, pp. 339–343.

    Article  CAS  PubMed  Google Scholar 

  18. Kupper, H., Lombi, E., Zhao, F.J., Wieshammer, G., and McGrath, S.P., Cellular Compartmentation of Nickel in the Hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense, J. Exp. Bot., 2001, vol. 52, pp. 2291–3000.

    Article  CAS  PubMed  Google Scholar 

  19. Psaras, G.K. and Manetas, Y., Nickel Localization in Seeds of the Metal Hyperaccumulator Thlaspi pindicum Hausskn., Ann. Bot., 2001, vol. 88, pp. 513–516.

    Article  CAS  Google Scholar 

  20. Bidwell, S.D., Crawford, S.A., Woodrow, I.E., Sommer-Knudsen, J., and Marshall, A.T., Subcellular Localization of Ni in the Hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell., Plant Cell Environ., 2004, vol. 27, pp. 705–716.

    Article  CAS  Google Scholar 

  21. Glater, R.A. and Hernandez, L., Lead Detection in Living Plant Tissue Using a New Histochemical Method, J. Air Pollut. Control Ass., 1972, vol. 22, pp. 463–467.

    CAS  Google Scholar 

  22. Wierzbicka, M., Lead Translocation and Localization in Allium cepa Roots, Can. J. Bot., 1987, vol. 65, pp. 1851–1860.

    CAS  Google Scholar 

  23. Theiss, H.-B., Localization of Lead in Seedlings of Lepidium sativum, Sci. Tech. Inf., 1990, vol. 9, pp. 246–252.

    Google Scholar 

  24. Wierzbicka, M. and Antosiewicz, D., How Lead Can Easily Enter the Food Chain — A Study of Plant Roots, Sci. Total Environ., 1993, Suppl., pp. 423–429.

  25. Tung, G. and Temple, P.J., Uptake and Localization of Lead in Corn (Zea mays L.) Seedlings, a Study by Histochemical and Electron Microscopy, Sci. Total. Environ., 1996, vol. 188, pp. 71–85.

    Article  CAS  PubMed  Google Scholar 

  26. Gzyl, J., Przymusinski, R., and Wozny, A., Organospecific Reactions of Yellow Lupine Seedlings to Lead, Acta Soc. Bot. Pol., 1997, vol. 66, pp. 61–66.

    CAS  Google Scholar 

  27. Peterson, C.A. and Cholewa, E., Structural Modifications of the Apoplast and Their Potential Impact on Ion Uptake, Z. Pflanzenernaehr. Bodenk., 1998, vol. 161, pp. 521–531.

    CAS  Google Scholar 

  28. Mench, M., Morel, J.L., and Guckert, A., Metal Binding Properties of High Molecular Weight Soluble Exudates from Maize (Zea mays) Roots, Biol. Fertil. Soils, 1987, vol. 3, pp. 165–169.

    Article  CAS  Google Scholar 

  29. Morel, J.L., Mench, M., and Guckert, A., Measurement of Pb, Cu and Cd Binding with Mucilage Exudates from Maize (Zea mays L.) Roots, Biol. Fertil. Soils, 1986, vol. 2, pp. 29–34.

    Article  Google Scholar 

  30. Seregin, I.V., Shpigun, L.K., and Ivanov, V.B., Distribution and Toxic Effects of Cadmium and Lead on Maize Roots, Russ. J. Plant Physiol., 2004, vol. 51, pp. 525–533.

    Article  CAS  Google Scholar 

  31. Levina, E.N., Obshchaya toksikologiya metallov (General Toxicology of Metals), Leningrad: Meditsina, 1978.

    Google Scholar 

  32. Seregin, I.V. and Kozhevnikova, A.D., Distribution of Heavy Metals and Strontium in Tissues of Maize Seedlings as Related to Specificity and Selectivity of Their Toxicity, Bioraznoobrazie prirodnykh i antropogennykh ekosistem. (Biodiversity of Natural and Anthropogenic Ecosystems), Yekaterinburg, 2005, pp. 92–97.

  33. Kozhevnikova, A.D., Seregin, I.V., Bystrova, E.I., and Ivanov, V.B., Effects of Heavy Metals and Strontium on Division of Root Cap Cells and Meristem Structural Organization, Russ. J. Plant Physiol., 2007, vol. 54, pp. 257–266.

    Article  CAS  Google Scholar 

  34. Danilova, M.F., Strukturnye osnovy pogloshcheniya veshchestv kornem (Structural Basics for Substance Absorption by the Root), Leningrad: Nauka, 1974.

    Google Scholar 

  35. Esau, K., Anatomy of Seed Plants, New York: John Wiley and Sons, 1977.

    Google Scholar 

  36. Kozhevnikova, A.D., Nickel Distribution in Maize Seedlings and Its Inhibitory Effect on Growth, Cand. (Biol.) Dissertation, Moscow: Inst. Plant Physiol. Russ. Acad. Sci., 2006.

    Google Scholar 

  37. White, P.J., Calcium Channels in the Plasma Membrane of Root Cells, Ann. Bot., 1998, vol. 81, pp. 173–183.

    Article  CAS  Google Scholar 

  38. White, P.J. and Broadley, M.R., Calcium in Plants, Ann. Bot., 2003, vol. 92, pp. 487–511.

    Article  CAS  PubMed  Google Scholar 

  39. Danilova, M.F., Mazel’, Yu.Ya., Stamboltsyan, E.Yu., and Telepova, M.N., Development of Ion Transport System in Plants: 2. Ultrastructure of Differentiating Zea mays Root Tissues, Sov. Plant Physiol., 1983, vol. 30, pp. 1061–1068.

    Google Scholar 

  40. Ivanov, V.B., Kletochnye osnovy rosta rastenii (Cellular Basics of Plant Growth), Moscow: Nauka, 1974.

    Google Scholar 

  41. Wierzbicka, M., Lead Accumulation and Its Translocation Barriers in Roots of Allium cepa L. — Autoradiographic and Ultrastructural Studies, Plant Cell Environ., 1987, vol. 10, pp. 17–26.

    Article  CAS  Google Scholar 

  42. Lane, S.D. and Martin, E.S., A Histochemical Investigation of Lead Uptake in Raphanus sativus, New Phytol., 1977, vol. 79, pp. 281–286.

    Article  CAS  Google Scholar 

  43. Clowes, F.A.L. and Juniper, B.E., The Fine Structure of the Quiescent Centre and Neighbouring Tissues in Root Meristems, J. Exp. Bot., 1964, vol. 15, pp. 622–630.

    Article  Google Scholar 

  44. Enstone, D.E. and Peterson, C.A., The Apoplastic Permeability of Root Apices, Can. J. Bot., 1992, vol. 70, pp. 1502–1512.

    CAS  Google Scholar 

  45. Seregin, I.V., Kozhevnikova, A.D., Davydova, M.A., Bystrova, E.I., Schat, H., and Ivanov, V.B., Role of Root and Shoot Tissues of Excluders and Hyperaccumulators in Nickel Transport and Accumulation, Dokl. Akad. Nauk, Biol.Sci., 2007, vol. 415, pp. 295ó297.

    Google Scholar 

  46. Jarvis, S.C., Jones, L.H.P., and Hopper, M.J., Cadmium Uptake from Solution by Plants and Its Transport from Roots to Shoots, Plant Soil, 1976, vol. 44, pp. 179–191.

    Article  CAS  Google Scholar 

  47. Kawasaki, T. and Moritsugu, M., Effect of Calcium on the Absorption and Translocation of Heavy Metals in Excised Barley Roots: Multi-Compartment Transport Box Experiment, Plant Soil, 1987, vol. 100, pp. 21–34.

    Article  CAS  Google Scholar 

  48. Gabbrielli, R. and Pandolfini, T., Effect of Mg2+ and Ca2+ on the Response to Nickel Toxicity in a Serpentine Endemic and Nickel-Accumulating Species, Physiol. Plant., 1984, vol. 62, pp. 540–544.

    Article  CAS  Google Scholar 

  49. Boyd, R.S. and Martens, S.N., Nickel Hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): A Constitutive Trait, Am. J. Bot., 1998, vol. 85, pp. 259–265.

    Article  CAS  Google Scholar 

  50. Seregin, I.V., Functional and Anatomical Investigations of Cadmium and Lead Toxicity for Maize Seedling Root, Cand. (Biol.) Dissertation, Moscow: Mosk. Ped. Gos. Univ., 1999.

    Google Scholar 

  51. Antosiewicz, D.M., Study of Calcium-Dependent Lead-Tolerance on Plants Differing in Their Level of Ca-Deficiency Tolerance, Environ. Pollut., 2005, vol. 134, pp. 23–34.

    Article  CAS  PubMed  Google Scholar 

  52. Clemens, S., Antosiewicz, D.M., Ward, J.M., Schachtman, D.P., and Schroeder, J.I., The Plant cDNA LCT1 Mediates the Uptake of Calcium and Cadmium in Yeast, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 12 043–12 048.

    Article  CAS  Google Scholar 

  53. Rogers, E.E., Eide, D.J., and Guerinot, M.L., Altered Selectivity in an Arabidopsis Metal Transporter, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 12 356–12 360.

    CAS  Google Scholar 

  54. Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L.D., Lasat, M.M., Garvin, D.F., Eide, D., and Kochian, L.V., A Molecular Physiology of Heavy Metal Transport in the Zn/Cd Hyperaccumulator Thlaspi caerulescens, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 4956–4960.

    Article  CAS  PubMed  Google Scholar 

  55. Kochian, L.V., Molecular Physiology of Mineral Nutrient Acquisition, Transport, and Utilization, Biochemistry and Molecular Biology of Plants, Buchanan, B.B., Gruissem, W., and Jones, R.L., Eds., Rockville: Courier, 2000, pp. 1204–1249.

    Google Scholar 

  56. White, P.J., Calcium Channels in Higher Plants, Biochim. Biophys. Acta, 2000, vol. 1465, pp. 171–189.

    Article  CAS  PubMed  Google Scholar 

  57. Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., and Forestier, C., Heavy Metal Toxicity: Cadmium Permeates through Calcium Channels and Disturbs the Plant Water Status, Plant J., 2002, vol. 32, pp. 539–548.

    Article  CAS  PubMed  Google Scholar 

  58. Ehlken, S. and Kirchner, G., Environmental Processes Affecting Plant Root Uptake of Radioactive Trace Elements and Variability of Transfer Factor Data: A Review, J. Environ. Radioactivity, 2002, vol. 58, pp. 97–112.

    Article  CAS  Google Scholar 

  59. Kostyuk, P.G., Kal’tsii i kletochnaya vozbudimost’ (Calcium and Cell Excitability), Moscow: Nauka, 1986.

    Google Scholar 

  60. Obroucheva, N.V., Ivanov, V.B., Sobotik, M., Bergmann, H., Antipova, O.V., Bystrova, E.I., Seregin, I.V., and Shpigun, L.K., Lead Effects on Cereal Roots in Terms of Cell Growth, Root Architecture and Metal Accumulation, Recent Advances of Plant Root Structure and Function, Gasparikova, O., et al., Eds., Dordrecht: Kluwer, 2001, pp. 165–170.

    Google Scholar 

  61. Ksiazek, M. and Wozny, A., Lead Movement in Poplar Adventitious Roots, Biol. Plant., 1990, vol. 32, pp. 54–57.

    Article  CAS  Google Scholar 

  62. Kocjan, G., Samardakiewicz, S., and Wozny, A., Regions of Lead Uptake in Lemna minor Plants and Localization of This Metal within Selected Parts of the Root, Biol. Plant., 1996, vol. 38, pp. 107–117.

    Article  CAS  Google Scholar 

  63. Vodnik, D., Jentschke, G., Fritz, E., Gogala, N., and Godbold, D.L., Root-Applied Cytokinin Reduces Lead Uptake and Affects Its Distribution in Norway Spruce Seedlings, Physiol. Plant., 1999, vol. 106, pp. 75–81.

    Article  CAS  Google Scholar 

  64. Zeier, J., Ruel, K., Ryser, U., and Schreiber, L., Chemical Analysis and Immunolocalization of Lignin and Suberin in Endodermal and Hypodermal/Rhizodermal Cell Walls of Developing Maize (Zea mays L.) Primary Roots, Planta, 1999, vol. 209, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  65. Samardakiewicz, S., Strawinski, P., and Wozny, A., The Influence of Lead on Callose Formation in Roots of Lemna minor L., Biol. Plant., 1996, vol. 38, pp. 463–467.

    Article  CAS  Google Scholar 

  66. Schreiber, L., Hartmann, K., Skrabs, M., and Zeier, J., Apoplastic Barriers in Roots: Chemical Composition of Endodermal and Hypodermal Cell Walls, J. Exp. Bot., 1999, vol. 50, pp. 1267–1280.

    Article  CAS  Google Scholar 

  67. Vassilev, A., Yordanov, I., and Tsonev, T., Effects of Cd2+ on the Physiological State and Photosynthetic Activity of Young Barley Plants, Photosynthetica, 1997, vol. 34, pp. 293–302.

    Article  CAS  Google Scholar 

  68. Molas, J., Changes in Morphological and Anatomical Structure of Cabbage (Brassica oleracea L.) Outer Leaves and in Ultrastructure of Their Chloroplasts Caused by an In Vitro Excess of Nickel, Photosynthetica, 1997, vol. 34, pp. 513–522.

    Article  CAS  Google Scholar 

  69. Obata, H. and Umebayashi, M., Effects of Cadmium on Mineral Nutrient Concentrations in Plant Differing in Tolerance for Cadmium, J. Plant Nutr., 1997, vol. 20, pp. 97–105.

    Article  CAS  Google Scholar 

  70. Sridhar, B.B.M., Diehl, S.V., Han, F.X., Monts, D.L., and Su, Y., Anatomical Changes due to Uptake and Accumulation of Zn and Cd in Indian Mustard (Brassica juncea), Environ. Exp. Bot., 2005, vol. 54, pp. 131–141.

    Article  CAS  Google Scholar 

  71. Vakhmistrov, D.B., Prostranstvennaya organizatsiya ionnogo transporta v korne. 49-e Timiryazevskoe chtenie (Spatial Organization of Ion Transport in the Root, the 49th Timiryazev Lecture), Moscow: Nauka, 1991.

    Google Scholar 

  72. Seregin, I.V. and Ivanov, V.B., Is the Endodermal Barrier the Only Factor Preventing the Inhibition of Root Branching by Heavy Metal Salts? Russ. J. Plant Physiol., 1997, vol. 44, pp. 797–800.

    CAS  Google Scholar 

  73. Sobotik I., Ivanov V.B., Obroucheva N.V., Seregin I.V., Martin M.L., Antipova, O.V., and Bergmann, H., Barrier Role of Root System in Lead-Exposed Plants, Angew. Bot., 1998, vol. 72, pp. 144–147.

    CAS  Google Scholar 

  74. Danilova, M.F. and Derteva, E.Yu., Anatomical and Physiological Data about Water and Solute Movement in Root Tissues, Bot. Zh. (Leningrad), 1964, vol. 49, pp. 1347–1365.

    Google Scholar 

  75. Danilova, M.F. and Stamboltsyan, E.Yu., Ultrastructure of Differentiating Cells in Root Primary Xylem and Solute Flux to Tracheal Elements, Bot. Zh. (Leningrad), vol. 60, pp. 913–926.

  76. Carpita, N. and McCann, M., The Cell Wall, Biochemistry and Molecular Biology of Plants, Buchanan, B.B., Gruissem, W., and Jones, R.L., Eds., Rockville: Courier, 2000, pp. 52–108.

    Google Scholar 

  77. Lane, S.D. and Martin, E.S., An Ultrastructural Examination of Lead Localization in Germinating Seeds of Raphanus sativus, Z. Pflanzenphysiol., 1982, vol. 107, pp. 33–40.

    CAS  Google Scholar 

  78. Wozny, A., Zatorska, B., and Mlodzianowski, F., Influence of Lead on the Development of Lupine Seedlings and Ultrastructural Localization of This Metal in the Roots, Acta Soc. Bot. Pol., 1982, vol. 51, pp. 345–351.

    CAS  Google Scholar 

  79. Malone, C., Koeppe, D.E., and Miller, J., Localization of Lead Accumulated by Corn Plants, Plant Physiol., 1974, vol. 53, pp. 388–394.

    Article  CAS  PubMed  Google Scholar 

  80. Sharpe, V. and Denny, P., Electron Microscope Studies on the Absorption and Localization of Lead in the Leaf Tissue of Potamogeton pectinatus L., J. Exp. Bot., 1976, vol. 27, pp. 1155–1162.

    Article  Google Scholar 

  81. Wierzbicka, M., Ultrastructural Location of Lead in the Cell Walls of Allium cepa L. Roots, Post. Biol. Komorki, 1984, vol. 3–4, pp. 509–512.

    Google Scholar 

  82. Rudakova, E.V., Karakis, K.D., and Sidorshina, E.I., Role of Plant Cell Walls in Metal Absorption and Accumulation, Fiziol. Biokh. Kul’t. Rast., 1988, vol. 20, pp. 3–12.

    CAS  Google Scholar 

  83. Ernst, W.H.O., Verkleij, J.A.C., and Schat, H., Metal Tolerance in Plants, Acta Bot. Neerl., 1992, vol. 43, pp. 229–248.

    Google Scholar 

  84. Seregin, I.V. and Ivanov, V.B., The Transport of Cadmium and Lead Ions through Root Tissues, Russ. J. Plant Physiol., 1998, vol. 45, pp. 780–793.

    CAS  Google Scholar 

  85. Qureshi, J.A., Collin, H.A., Hardwick, K., and Thurman, D.A., Metal Tolerance in Tissue Cultures of Anthoxanthum odoratum, Plant Cell Rep., 1981, vol. 1, pp. 80–82.

    Article  CAS  Google Scholar 

  86. Qureshi, J.A., Hardwick, K., and Collin, H.A., Intracellular Localization of Lead in a Lead Tolerant and Sensitive Clone of Anthoxanthum odoratum, Plant Physiol., 1986, vol. 122, pp. 357–364.

    CAS  Google Scholar 

  87. Satake, K. and Miyasaka, K., Evidence of High Mercury Accumulation in the Cell Wall of the Liverwort Jungermannica vulcanicola Steph, to Form Particles of Mercury-Sulphur Compound, J. Bryol., 1984, vol. 13, pp. 101–105.

    Google Scholar 

  88. Seregin, I.V., Pekhov, V.M., and Ivanov, V.B., Plasmolysis as a Tool to Reveal Lead Localization in the Apoplast of Root Cells, Russ. J. Plant Physiol., 2002, vol. 49, pp. 283–285.

    Article  CAS  Google Scholar 

  89. Ros, R., Cooke, D.T., Burden, R.S., and James, C.S., Effects of the Herbicide MCPA, and the Heavy Metals, Cadmium and Nickel on the Lipid Composition, Mg2+-ATPase Activity and Fluidity of Plasma Membranes from Rice, Oryza sativa (cv. Bahia) Shoots, J. Exp. Bot., 1990, vol. 41, pp. 457–462.

    Article  CAS  Google Scholar 

  90. Meharg, A.A., The Role of Plasmalemma in Metal Tolerance in Angiosperms, Physiol. Plant., 1993, vol. 88, pp. 191–198.

    Article  CAS  Google Scholar 

  91. Ouariti, O., Boussama, N., Zarrouk, M., Cherif, A., and Chorbal, M.N., Cadmium and Copper-Induced Changes in Tomato Membrane Lipids, Phytochemistry, 1997, vol. 45, pp. 1343–1350.

    Article  CAS  PubMed  Google Scholar 

  92. Van Assche, F. and Glijsters, H., Effects of Metals on Enzyme Activity in Plants, Plant, Cell Environ., 1990, vol. 13, pp. 195–206.

    Article  Google Scholar 

  93. Salt, D.E. and Wagner, G.J., Cadmium Transport across Tonoplast of Vesicles from Oat Roots. Evidence for a Cd2+/H+ Antiport Activity, J. Biol. Chem., 1993, vol. 268, pp. 12 297–12 302.

    CAS  Google Scholar 

  94. Gries, G.E. and Wagner, G.J., Association of Nickel versus Transport of Cadmium and Calcium in Tonoplast Vesicles of Oat Roots, Planta, 1998, vol. 204, pp. 390–396.

    Article  CAS  PubMed  Google Scholar 

  95. Chardonnens, A.N., Laar, T., Koevoets, P.L.M., Kuijper, L.D.J., and Verkleij, J.A.C., Some Notes on Vacuolar Compartmentalization of Cadmium in Relation to the Mechanism of Naturally Selected Cadmium Tolerance in Silene vulgaris, The Role of Vacuolar Compartmentalization in the Mechanism of Naturally Selected Zinc and Cadmium Tolerance, Chardonnens, A.N., Ed., Amsterdam: Vrije Univ., 1999, pp. 31–41.

    Google Scholar 

  96. Clemens, S. and Simm, C., Schizosaccharomyces pombe as a Model for Metal Homeostasis in Plant Cells: The Phytochelatin-Dependent Pathway Is the Main Cadmium Detoxification Mechanism, New Phytol., 2003, vol. 159, pp. 323–330.

    Article  CAS  Google Scholar 

  97. Rauser, W.E., Phytochelatins and Related Peptides: Structure, Biosynthesis and Function, Plant Physiol., 1995, vol. 109, pp. 1141–1149.

    Article  CAS  PubMed  Google Scholar 

  98. Zenk, M.H., Heavy Metal Detoxification in Higher Plants — A Review, Gene, 1996, vol. 179, pp. 21–30.

    Article  CAS  PubMed  Google Scholar 

  99. Cobbett, C.S., Phytochelatins and Their Roles in Heavy Metal Detoxification, Plant Physiol., 2000, vol. 123, pp. 825–832.

    Article  CAS  PubMed  Google Scholar 

  100. Seregin, I.V., Phytochelatins and Their Role in Cadmium Detoxification in Higher Plants, Usp. Biol. Khim., 2001, vol. 41, pp. 283–300.

    CAS  Google Scholar 

  101. Clemens, S., Palmgren, M.G., and Kramer, U., Along Way Ahead: Understanding and Engineering Plant Metal Accumulation, Trends Plant Sci., 2002, vol. 7, pp. 309–315.

    Article  CAS  PubMed  Google Scholar 

  102. Krotz, R.M., Evangelou, B.P., and Wagner, G.J., Relationships between Cadmium, Zinc, Cd-Peptide, and Organic Acid in Tobacco Suspension Cells, Plant Physiol., 1989, vol. 91, pp. 780–787.

    Article  CAS  PubMed  Google Scholar 

  103. Mazen, A.M.A. and El Maghraby, O.M.O., Accumulation of Cadmium and Strontium, and a Role of Calcium Oxalate in Water Hyacinth Tolerance, Biol. Plant., 1997/98, vol. 40, pp. 411–417.

    Article  CAS  Google Scholar 

  104. Rauser, W.E., Structure and Function of Metal Chelators Produced by Plants: The Case for Organic Acids, Amino Acids, Phytin, and Metallothioneins, Cell Biochem. Biophys., 1999, vol. 31, pp. 19–48.

    Article  CAS  PubMed  Google Scholar 

  105. Schat, H., Llugany, M., Vooijs, R., Hartley-Whitaker, J., and Bleeker, P.M., The Role of Phytochelatins in Constitutive and Adaptive Heavy Metal Tolerances in Hyperaccumulator and Non-Hyperaccumulator Metallophytes, J. Exp. Bot., 2002, vol. 53, pp. 2381–2392.

    Article  CAS  PubMed  Google Scholar 

  106. Seregin, I.V., Vooijs, R., Kozhevnikova, A.D., Ivanov, V.B., and Schat, H., Cadmium and Lead Effects on Phytochelatin Accumulation in Shoots and Different Parts of the Maoze Root, Dokl. Akad. Nauk, Biol.Sci., 2007, vol. 415, pp. 304–306.

    Article  CAS  Google Scholar 

  107. Grill, E., Loffler, S., Winnacker, E.-L., and Zenk, M.N., Phytochelatins, the Heavy-Metal-Binding Peptides of Plants, Are Synthesized from Glutathione by a Specific γ-Glutamylcysteine Dipeptidyl Transpeptidase (Phytochelatin Synthase), Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 6838–6842.

    Article  CAS  PubMed  Google Scholar 

  108. Chen, J., Zhou, J., and Goldsbrough, P.B., Characterization of Phytochelatin Synthase from Tomato, Physiol. Plant., 1997, vol. 101, pp. 165–172.

    Article  CAS  Google Scholar 

  109. Klapheck, S., Fliegner, W., and Zimmer, I., Hydroxymethyl-Phytochelatins [(-Glutamylcysteine)n-serine] Are Metal-Induced Peptides of the Poaceae, Plant Physiol., 1994, vol. 104, pp. 1325–1332.

    Article  CAS  PubMed  Google Scholar 

  110. Wojcik, M. and Tukendorf, A., Cd-Tolerance of Maize, Rye and Wheat Seedlings, Acta Physiol. Plant., 1999, vol. 21, pp. 99–107.

    Article  CAS  Google Scholar 

  111. Stolt, J.P., Sneller, F.E.C., Bryngelsson, T., Lundborg, T., and Schat, H., Phytochelatin and Cadmium Accumulation in Wheat, Environ. Exp. Bot., 2003, vol. 49, pp. 21–28.

    Article  CAS  Google Scholar 

  112. Tukendorf, A. and Rauser, W.E., Changes in Glutathione and Phytochelatins in Roots of Maize Seedlings Exposed to Cadmium, Plant Sci., 1990, vol. 70, pp. 155–166.

    Article  CAS  Google Scholar 

  113. Rauser, W.E., Changes in Glutathione Content of Maize Seedlings Exposed to Cadmium, Plant Sci., 1987, vol. 51, pp. 171–175.

    Article  CAS  Google Scholar 

  114. Heiss, S., Schafer, H.J., Haag-Kerwer, A., and Rausch, T., Cloning Sulfur Assimilation Genes of Brassica juncea L.: Cadmium Differentially Affects the Expression of a Putative Low-Affinity Sulfate Transporter and Isoforms of ATP Sulfurylase and APS Reductase, Plant Mol. Biol., 1999, vol. 39, pp. 847–857.

    Article  CAS  PubMed  Google Scholar 

  115. Nocito, F.F., Pirovano, L., Cocucci, M., and Sacchi, G.A., Cadmium-Induced Sulfate Uptake in Maize Roots, Plant Physiol., 2002, vol. 129, pp. 1872–1879.

    Article  CAS  PubMed  Google Scholar 

  116. Gupta, M., Rai, U.N., Tripathi, R.D., and Chandra, P., Lead-Induced Changes in Glutathione and Phytochelatin in Hydrilla verticillata Royle., Chemosphere, 1995, vol. 30, pp. 2011–2020.

    Article  CAS  Google Scholar 

  117. Keltjens, W.G. and van Beusichem, M.L., Phytochelatins as Biomarkers for Heavy Metal Stress in Maize (Zea mays L.) and Wheat (Triticum aestivum L.): Combined Effects of Copper and Cadmium, Plant Soil, 1998, vol. 203, pp. 119–126.

    Article  CAS  Google Scholar 

  118. Khan, D.N., Duckett, J.G., Frankland, B., and Kirkham, J.B., An X-Ray Microanalytical Study of the Distribution of Cadmium in Roots of Zea mays L., Plant Physiol., 1984, vol. 115, pp. 19–28.

    CAS  Google Scholar 

  119. Vazquez, M.D., Barcelo, J., Poschenrieder, Ch., Madico, J., Hatton, P., Baker, A.J.M., and Cope, G.H., Localization of Zinc and Cadmium in Thlaspi caerulescens (Brassicaceae), a Metallophyte That Can Hyperaccumulate Both Metals, J. Plant Physiol., 1992, vol. 140, pp. 350–355.

    CAS  Google Scholar 

  120. Kupper, H., Mijovilovich, A., Meyer-Klaucke, W., and Kroneck, P.M.H., Tissue-and Age-Dependent Differences in the Complexation of Cadmium and Zinc in the Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) Revealed by X-Ray Absorption Spectroscopy, Plant Physiol., 2004, vol. 134, pp. 748–757.

    Article  PubMed  CAS  Google Scholar 

  121. Rauser, W.E. and Ackerley, C.A., Localization of Cadmium in Granules within Differentiating and Mature Root Cells, Can. J. Bot., 1987, vol. 65, pp. 643–646.

    Article  CAS  Google Scholar 

  122. Vazquez, M.D., Poschenrieder, Ch., and Barcelo, J., Ultrastructural Effects and Localization of Low Cadmium Concentrations in Bean Roots, New Phytol., 1992, vol. 120, pp. 215–226.

    Article  CAS  Google Scholar 

  123. Carrier, P., Baryla, A., and Havaux, M., Cadmium Distribution and Microlocalization in Oilseed Rape (Brassica napus) after Long-Term Growth on Cadmium-Contaminated Soil, Planta, 2003, vol. 216, pp. 939–950.

    CAS  PubMed  Google Scholar 

  124. Liu, D. and Kottke, I., Subcellular Localization of Cd in the Root Cells of Allium sativum by Electron Energy Loss Spectroscopy, J. BioSci., 2003, vol. 28, pp. 471–478.

    Article  CAS  PubMed  Google Scholar 

  125. Cosio, C., DeSantis, L., Frey, B., Diallo, S., and Keller, C., Distribution of Cadmium in Leaves of Thlaspi caerulescens, J. Exp. Bot., 2005, vol. 56, pp. 765–775.

    Article  CAS  PubMed  Google Scholar 

  126. Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L., and Hartung, W., The Exodermis: A Variable Apoplastic Barrier, J. Exp. Bot., 2001, vol. 52, pp. 2245–2264.

    Article  CAS  PubMed  Google Scholar 

  127. Derteva, E.Yu., Structure and Functions of Endodermis, Bot. Zh. (Leningrad, 1965, vol. 50, pp. 1327–1337.

    Google Scholar 

  128. Grymaszewscka, G. and Golinowski, W., The Structure of Endodermis during the Development of Wheat (Triticum aestivum L.) Roots, Acta Soc. Bot. Pol., 1987, vol. 56, pp. 3–10.

    Google Scholar 

  129. Kopsinska, J. and Golinowski, W., The Structure of Endodermis during the Development of Pea (Pisum sativum L.) Roots, Acta Soc. Bot. Pol., 1987, vol. 56, pp. 11–18.

    Google Scholar 

  130. Ma, F. and Peterson, C.A., Development of Cell Wall Modifications in the Endodermis and Exodermis of Allium cepa Roots, Can. J. Bot., 2001, vol. 79, pp. 621–634.

    Article  Google Scholar 

  131. Danilova, M.F. and Stamboltsyan, E.Yu., Structure of “Caspari Belt” (Barrier Function of Endodermis), Bot. Zh. (Leningrad), 1969, vol. 54, pp. 1288–1291.

    Google Scholar 

  132. Haas, D.L. and Carothers, L.B., Some Ultrastructural Observations on Endodermal Cell Development in Zea mays Roots, Am. J. Bot., 1975, vol. 62, pp. 336–348.

    Article  Google Scholar 

  133. Zeier, J. and Schreiber, L., Chemical Composition of Hypodermal and Endodermal Cell Walls and Xylem Vessels Isolated from Clivia miniata, Plant Physiol., 1997, vol. 113, pp. 1223–1231.

    CAS  PubMed  Google Scholar 

  134. Zeier, J., Goll, A., Yokoyama, M., Karahara, I., and Schreiber, L., Structure and Chemical Composition of Endodermal and Rhizodermal/Hypodermal Walls of Several Species, Plant, Cell Environ., 1999, vol. 22, pp. 271–279.

    Article  CAS  Google Scholar 

  135. Punz, W.F. and Sieghardt, H., The Response of Roots of Herbaceous Plant Species to Heavy Metals, Environ. Exp. Bot., 1993, vol. 33, pp. 85–95.

    Article  CAS  Google Scholar 

  136. Vakmistrov, D.B., Specialization of Root Tissues in Ion Transport, Structure and Function of Plant Roots, Brouwer, R., et al., Ed., Hague, 1981, pp. 203–208.

  137. Esau, K., Plant Anatomy, New York: John Wiley and Sons, 1953.

    Google Scholar 

  138. Danilova, M.F., Mazel’, Yu.Ya., Telepova, M.N., and Zhitneva, N.N., Development of Systems for Accumulation and Ion Transport in the Zea mays Root: Root Anatomy and Ultrastructure, Sov. Plant Physiol., 1990, vol. 37, pp. 629–635.

    Google Scholar 

  139. Ivanov, V.B., Bystrova, E.I., and Seregin, I.V., Comparative Impacts of Heavy Metals on Root Growth as Related to Their Specificity and Selectivity, Russ. J. Plant Physiol., 2003, vol. 50, pp. 398–406.

    Article  CAS  Google Scholar 

  140. Samantaray, S., Rout, G.R., and Das, P., Tolerance of Rice to Nickel in Nutrient Solution, Biol. Plant., 1997, vol. 40, pp. 295–298.

    Article  CAS  Google Scholar 

  141. Ivanov, V.B., Root Growth Responses to Chemicals, Sov. Sci. Rev., Ser. D, 1994, pp. 1–70.

  142. McCully, M.E. and Canny, M.J., Pathways and Processes of Water and Nutrient Movement in Roots, Plant Soil, 1988, vol. 111, pp. 159–170.

    Article  CAS  Google Scholar 

  143. Pielichowska, M. and Wierzbicka, M., Uptake and Localization of Cadmium by Biscutella laevigata, a Cadmium Hyperaccumulator, Acta Biol. Gracoviensia, 2004, vol. 46, pp. 57–63.

    Google Scholar 

  144. McCully, M., How Do Real Roots Work? Some New Views of Root Structure, Plant Physiol., 1995, vol. 109, pp. 1–6.

    CAS  PubMed  Google Scholar 

  145. Kersten, W.J., Brooks, R.R., Reeves, R.D., and Jaffre, T., Nature of Nickel Complexes in Psychotria douarrei and Other Nickel-Accumulating Plants, Phytochemistry, 1980, vol. 19, pp. 1963–1965.

    Article  CAS  Google Scholar 

  146. Cataldo, D.A., McFadden, K.M., Garland, T.R., and Wildung, R.E., Organic Constituents and Complexation of Nickel (II), Iron (III), Cadmium (II) and Plutonium (IV) in Soybean Xylem Exudates, Plant Physiol., 1988, vol. 86, pp. 734–739.

    Article  CAS  PubMed  Google Scholar 

  147. Homer, F.A., Reeves, R.D., Brooks, R.R., and Baker, A.J.M., Characterization of the Nickel-Rich Extract from the Nickel Hyperaccumulator Dichapetalum gelonioides, Phytochemistry, 1991, vol. 30, pp. 2141–2145.

    Article  CAS  Google Scholar 

  148. Kramer, U., Cotter-Howells, J.D., Charnock, J.M., Baker, A.J.M., and Smith, A.C., Free Histidine as a Metal Chelator in Plants That Accumulate Nickel, Lett. Nature, 1996, vol. 379, pp. 635–638.

    Article  CAS  Google Scholar 

  149. Persans, M.W., Yan, X., Patnoe, J.M., Kramer, U., and Salt, D.E., Molecular Dissection of the Role of Histidine in Nickel Hyperaccumulation in Thlaspi goesingense (Halacsy), Plant Physiol., 1999, vol. 121, pp. 1117–1126.

    Article  CAS  PubMed  Google Scholar 

  150. Zeller, S. and Feller, U., Redistribution of Cobalt and Nickel in Detached Wheat Shoots: Effects of Steam-Girdling and of Cobalt and Nickel Supply, Biol. Plant., 1998, vol. 41, pp. 427–434.

    Article  CAS  Google Scholar 

  151. Koranda, J.J. and Robison, W.L., Accumulation of Radionuclides by Plants as a Monitor System, Environ. Health Perspect., 1978, vol. 27, pp. 165–179.

    Article  CAS  PubMed  Google Scholar 

  152. Zeller, S. and Feller, U., Long-Distance Transport of Alkali Metals in Maturing Wheat, Biol. Plant., 2000, vol. 43, pp. 523–528.

    Article  CAS  Google Scholar 

  153. Karley, A.J., Leigh, R.A., and Sanders, D., Differential Ion Accumulation and Ion Fluxes in the Mesophyll and Epidermis of Barley, Plant Physiol., 2000, vol. 122, pp. 835–844.

    Article  CAS  PubMed  Google Scholar 

  154. Karley, A.J., Leigh, R.A., and Sanders, D., Where Do All the Ions Go? The Cellular Basis of Differential Ion Accumulation in Leaf Cells, Trends Plant Sci., 2000, vol. 5, pp. 465–470.

    Article  CAS  PubMed  Google Scholar 

  155. Bhatia, N.P., Walsh, K.B., Orlic, I., Siegele, R., Ashwath, N., and Baker, A.J.M., Studies on Spatial Distribution of Nickel in Leaves and Stems of the Metal Hyperaccumulator Stackhousia tryonii Using Nuclear Microprobe (Micro-PIXE) and EDXS Techniques, Funct. Plant Biol., 2004, vol. 31, pp. 1061–1074.

    Article  CAS  Google Scholar 

  156. Broadhurst, C.L., Chaney, R.L., Angle, J.S., Maugel, T.K., Erbe, E.F., and Murphy, C.A., Simultaneous Hyperaccumulation of Nickel, Manganese, and Calcium in Alyssum Leaf Trichomes, Environ. Sci. Technol., 2004, vol. 38, pp. 5797–5802.

    Article  CAS  PubMed  Google Scholar 

  157. MacNear, D.H., Peltier, E., Everhart, J., Chaney, R.L., Sutton, S., Newville, M., Rivers, M., and Sparks, D.L., Application of Quantitative Fluorescence and Absorption-Edge Computed Microtomography to Image Metal Compartmentalization in Alyssum murale, Environ. Sci. Technol., 2005, vol. 39, pp. 2210–2218.

    Article  CAS  Google Scholar 

  158. Solereder, H., Systematische Anatomie der Dicotyledonen, Stuttgart: Verlag von Ferdinand Enke, 1899, pp. 67–77.

    Google Scholar 

  159. Metcalfe, C.R. and Chalk, L., Leaves, Stem, and Wood in Relation to Taxanomy with Notes on Economic Uses, Anatomy of the Dikotyledons., Oxford: Clarendon, 1950, vol. 1, pp. 83–91.

    Google Scholar 

  160. Mazel’, Yu.Ya., Development of the Systems for Accumulation and Ion Transport in Plants (as Exemplified by Potassium and Calcium), Doctoral (Biol.) Dissertation, Moscow: Mosk. Timiryazev. Agric. Acad., 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Seregin.

Additional information

Original Russian Text © I.V. Seregin, A.D. Kozhevnikova, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 1, pp. 3–26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seregin, I.V., Kozhevnikova, A.D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol 55, 1–22 (2008). https://doi.org/10.1134/S1021443708010019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443708010019

Key words

Navigation