Skip to main content

Impact, Metabolism, and Toxicity of Heavy Metals in Plants

  • Chapter
  • First Online:
Plant Responses to Xenobiotics

Abstract

Plants are sessile organisms, and in order to survive they have to combat with the surrounding environment. Due to the numerous anthropogenic activities, an excessive level of different heavy metals accumulates in the soil system. The uptake of eminent concentration of these metals is toxic for the living organisms existing in that region. The troubling impact of heavy metals on plants is associated with the deformed growth and development, ionic imbalance, reduced photosynthetic rate, degradation of photosynthetic pigments and chloroplast, alteration in elemental composition, and disturbed plant water relation. The influence of metal ion is more complex by interaction between different ions because a high level of one metal ion may interfere with the uptake and transport of others and disturb the nutritional composition of plants and induce toxic symptoms. Several mechanisms have been evolved by the plants to sustain suitable physiological concentrations of metal ions and to minimize exposure of cellular processes to toxic heavy metals. Plants exposed to toxic concentrations of heavy metals attempt to prevent entry of these metal ions in roots as well as translocation from root to aerial parts by restricting metal ions to the apoplastic region, binding them to the cell wall, extracellular chelation with root exudates, or by reducing long-distance transport. Once metals enter in the cell, several storage and detoxification strategies including metal transport, chelation, and sequestration into the vacuole take place to diminish the toxic effects. The entry and transport of heavy metal in plants, strategies of plants to overcome the lethal consequences, and the specific toxic effects of heavy metals on plants when exposed to metal-enriched environment are emphasized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aery NC (1994) Cadmium-Zinc induced chlorosis in soybean and its relation to iron stress. Asian J Plant Sci 6(1&2):27–33

    Google Scholar 

  • Aery NC (1998) Accumulation, toxicity and detoxification of heavy metals in plants. In: Sood PP, Prakash R (eds) Heavy metal pollution, toxication and chelation. M.D. Publications Pvt. Ltd., New Delhi, pp 277–306

    Google Scholar 

  • Aery NC (2012) Plant defence against heavy metal stress. In: Merillon JM, Ramawat KG (eds) Defence: biological control. Springer, Dordrechts, pp 241–269

    Chapter  Google Scholar 

  • Aery NC, Jagetiya BL (1997) Relative toxicity of cadmium, lead, and zinc on barley. Commun Soil Sci Plant Anal 28(11–12):949–960

    Article  CAS  Google Scholar 

  • Aery NC, Rana D (2007) Interactive effects of Zn, Pb and Cd in barley. J Environ Sci Eng 49(1):71–76

    CAS  PubMed  Google Scholar 

  • Aery NC, Sarkar S (1988) Histochemical localization of accumulated zinc in soybean and fenugreek. Bionature 8(2):109–112

    Google Scholar 

  • Aery NC, Sarkar S (1990) Heavy metal toxicity and temperature interactions in fenugreek. Bionature 10(1&2):15–18

    Google Scholar 

  • Aery NC, Sarkar S (1991) Studies on the effect of heavy metal stress on growth parameters of soybean. J Environ Biol 12(1):15–24

    CAS  Google Scholar 

  • Aery NC, Sarkar S (2012a) Metal species vis-à-vis seed germination and early seedling growth responses in soybean. J Chem Bio Phy Sci Sec B 2(2):763–769

    CAS  Google Scholar 

  • Aery NC, Sarkar S (2012b) Responses of Zn and Cd treatment in soybean and fenugreek. NBU J Plant Sci 6(1):71–76

    Google Scholar 

  • Aery NC, Tyagi S (1988) Cu/Zn ratio: an indicator of mineralization in biogeochemistry. Bionature 8(2):142–144

    Google Scholar 

  • Alessa L, Oliveira L (2001) Aluminum toxicity studies in Vaucheria longicaulis var. macounii (Xanthophyta, Tribophyceae). II. Effects on the F-actin array. Environ Exp Bot 45(3):223–237

    Article  CAS  PubMed  Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85

    Article  Google Scholar 

  • Ashraf MP, Harris PJ (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Assche FV, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13(3):195–206

    Article  Google Scholar 

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46(1):84–101

    Article  CAS  PubMed  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126(2):696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AJ (1981) Accumulators and excluders‐strategies in the response of plants to heavy metals. J Plant Nutr 3(1–4):643–654

    Article  CAS  Google Scholar 

  • Baker AJ, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1(2):81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD et al (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contamined soil and water. CRC Press LLC, Boca Raton, pp 85–107

    Google Scholar 

  • Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48(1):75–92

    Article  CAS  Google Scholar 

  • Baszyński T (2014) Interference of Cd2+ in functioning of the photosynthetic apparatus of higher plants. Acta Soc Bot Pol 55(2):291–304

    Article  Google Scholar 

  • Baszyński T, Krol M, Wolinka D (1981) Effect of chromate on photosynthetic apparatus of Lemna minor L. In: Akoynoglou G (ed) Photosynthesis II. Electron transport and photophosphorylation, Balbon International Science Services, Philadelphia, pp 245–246

    Google Scholar 

  • Baxter I, Tchieu J, Sussman MR et al (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132(2):618–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88(11):1549–1559

    Article  CAS  PubMed  Google Scholar 

  • Blamey FP, Asher CJ, Edwards DC et al (1993) In vitro evidence of aluminum effects on solution movement through root cell walls. J Plant Nutr 16(4):555–562

    Article  CAS  Google Scholar 

  • Blancaflor EB, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol 118(1):159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S et al (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31(3):860–865

    Article  Google Scholar 

  • Brookes A, Collins JC, Thurman DA (1981) The mechanism of zinc tolerance in grasses. J Plant Nutr 3(1–4):695–705

    Article  CAS  Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1994) Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ 17(2):153–162

    Article  CAS  Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1995) Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: a comparison of Cd‐, Mo‐, Ni‐ and Zn stress. New Phytol 129(3):403–409

    Article  CAS  Google Scholar 

  • Bubb JM, Lester JN (1991) The impact of heavy metals on lowland rivers and the implications for man and the environment. Sci Total Environ 100:207–233

    Article  CAS  PubMed  Google Scholar 

  • Burton KW, Morgan E, Roig A (1986) Interactive effects of cadmium, copper and nickel on the growth of Sitka spruce and studies of metal uptake from nutrient solutions. New Phytol 1:549–557

    Article  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83(3):463–468

    Article  CAS  Google Scholar 

  • Carlson RW, Bazzaz FA, Rolfe GL (1975) The effect of heavy metals on plants: II. Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni, and Tl. Environ Res 10(1):113–120

    Article  CAS  PubMed  Google Scholar 

  • Cedergreen N, Streibig JC, Kudsk P et al (2007) The occurrence of hormesis in plants and algae. Dose-Response 5:150–162

    Article  CAS  Google Scholar 

  • Chaney RL, Hornick SB (1978) Accumulation and effects of cadmium on crops. In: Proceedings of the First International Cadmium Conference, San Francisco. Metals Bulletin Ltd., London, pp 125–140

    Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Chen YX, Lin Q, Luo YM et al (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50(6):807–811

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang Y, Wu W et al (2006) Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Sci Total Environ 356(1):247–255

    Article  CAS  PubMed  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. doi:10.1155/2014/752708

    Google Scholar 

  • Choudhary A, Singh RP (2000) Cadmium-induced changes in diamine oxidase activity and polyamine levels in Vigna radiata Wilczek seedlings. J Plant Physiol 156(5):704–710

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Antosiewicz DM, Ward JM et al (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci U S A 95(20):12043–12048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Bio 53(1):159–182

    Article  CAS  Google Scholar 

  • Cunningham JD, Keeney DR, Ryan JA (1975) Phytotoxicity and uptake of metals added to soils as inorganic salts or in sewage sludge. J Environ Qual 4(4):460–462

    Article  CAS  Google Scholar 

  • Davies BE (1995) Lead and other heavy metals in urban areas and consequences for the health of their inhabitants. In: Majumdar SK, Miller EW, Brenner FJ (eds) Environmental contaminants, ecosystems and human health. The Pennsylvania Academy of Science, Easton, pp 287–307

    Google Scholar 

  • Davies KL, Davies MS, Francis D (1995) The effects of zinc on cell viability and on mitochondrial structure in contrasting cultivars of Festuca rubra L. – a rapid test for zinc tolerance. Environ Pollut 88:109–113

    Article  CAS  PubMed  Google Scholar 

  • Davis RD, Beckett PHT, Wollan E (1978) Critical levels of twenty potentially toxic elements in young spring barley. Plant Soil 49:395–408

    Article  CAS  Google Scholar 

  • De DN (2000) Plant cell vacuoles. CSIRO Publishing, Collingwood

    Google Scholar 

  • de Borne FD, Elmayan T, de Roton C et al (1998) Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Mol Breed 4(2):83–90

    Article  Google Scholar 

  • de la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL et al (1997) Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science 276(5318):1566–1568

    Article  PubMed  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    Google Scholar 

  • Dicko MH, Gruppen H, Traore AS et al (2006) Phenolic compounds and related enzymes as determinants of sorghum for food use. Biotechnol Mol Biol Rev 1:21–38

    Google Scholar 

  • Dietz KJ, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from biomolecule to ecosystem. Springer, Berlin/Heidelberg, pp 73–97

    Chapter  Google Scholar 

  • Dong J, Wu F, Huang R et al (2007) A chromium-tolerant plant growing in Cr-contaminated land. Int J Phytorem 9(3):167–179

    Article  CAS  Google Scholar 

  • Dräger DB, Desbrosses‐Fonrouge AG, Krach C et al (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co‐segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39(3):425–439

    Article  PubMed  CAS  Google Scholar 

  • Duan GL, Zhu YG, Tong YP et al (2005) Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138(1):461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144(1):197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst WH, Verkleij JA, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41(3):229–248

    Article  CAS  Google Scholar 

  • Fernandes MA, Santos MS, Alpoim MC et al (2002) Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study. J Biochem Mol Toxicol 16:53–63

    Article  CAS  PubMed  Google Scholar 

  • Feroci G, Badiello R, Fini A (2005) Interactions between different selenium compounds and zinc, cadmium and mercury. J Trace Elem Med Bio 18(3):227–234

    Article  CAS  Google Scholar 

  • Fleming AL, Foy CD (1968) Root structure reflects differential aluminium tolerance in wheat varieties. Agron J 60:172–176

    Article  Google Scholar 

  • Foy CD (1974) Effects of aluminium on plant growth. In: Carson EW (ed) The plant root and its environment. University Press of Virginia, CharlottesvIlle, pp 601–642

    Google Scholar 

  • Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plant Anal 19:959–987

    Article  CAS  Google Scholar 

  • Foy CD, Chaney RT, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29(1):511–566

    Article  CAS  Google Scholar 

  • Frantzios G, Galatis B, Apostolakos P (2000) Aluminum effects on microtubule organization in dividing root-tip cells of Triticum turgidum. I. Mitotic cells. New Phytol 145(2):211–224

    Article  CAS  Google Scholar 

  • Frantzios G, Galatis B, Apostolakos P (2001) Aluminum effects on microtubule organization in dividing root-tip cells of Triticum turgidum. II. Cytokinetic cells. J Plant Res 114(2):157–170

    Article  CAS  Google Scholar 

  • Fusconi A, Gallo C, Camusso W (2007) Effects of cadmium on root apical meristems of Pisum sativum L.: cell viability, cell proliferation and microtubule pattern as suitable markers for assessment of stress pollution. Mutat Res Genet Toxicol Environ Mutagen 632:9–19

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3(1):58–66

    Google Scholar 

  • Gassmann W, Schroeder JI (1994) Inward-rectifying K+ channels in root hairs of wheat (a mechanism for aluminium sensitive low-affinity K+ uptake and membrane potential control). Plant Physiol 105:1399–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gekeler W, Grill E, Winnacker EL et al (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch C 44:361–369

    CAS  Google Scholar 

  • Gisbert C, Ros R, De Haro A et al (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445

    Article  CAS  PubMed  Google Scholar 

  • Gough LP, Shacklette HT, Case AA (1979) Element concentrations toxic to plants, animals, and man. US Geol Surv Bull 1466:80

    Google Scholar 

  • Grcman H, Velikonja-Bolta Š, Vodnik D et al (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235(1):105–114

    Article  CAS  Google Scholar 

  • Grcman H, Vodnik D, Velikonja-Bolta Š et al (2003) Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32(2):500–506

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 15(199):309–313

    Article  CAS  Google Scholar 

  • Hagemeyer J (1999) Ecophysiology of plant growth under heavy metal stress. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 157–182

    Chapter  Google Scholar 

  • Hajiboland R, Poschenrieder C (2015) Localization and compartmentation of Al in the leaves and roots of tea plants. Phyton 84:86–100

    Google Scholar 

  • Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52(1):265–275

    Article  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Bowen HC, White PJ et al (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170(2):239–260

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ et al (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–396

    Article  CAS  PubMed  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA et al (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol Plant 116(1):73–78

    Article  CAS  PubMed  Google Scholar 

  • Hawkes SJ (1997) What is a “heavy metal”? J Chem Edu 74(11):1374–1378

    Article  CAS  Google Scholar 

  • Hendrix DL, Higinbotham N (1974) Heavy metals and sulphhydryl reagents as probes of ion uptake in pea stem. In: Zimmermann PU, Dainty J (eds) Membrane transport in plants. Springer, Berlin/Heidelberg, pp 412–417

    Chapter  Google Scholar 

  • Hogg TJ, Stewart JWB, Bettany JR (1978) Influence of the chemical form of mercury on its adsorption and ability to leach through soils. J Environ Qual 7(3):440–445

    Article  CAS  Google Scholar 

  • Horst WJ, Asher CJ, Cakmak I et al (1992) Short-term responses of soybean roots to aluminium. J Plant Physiol 140:174–178

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JA et al (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2:2012

    Google Scholar 

  • Huang CY, Bazzaz FA, Vanderhoeff LN (1974) The inhibition of soybean metabolism by cadmium and lead. Plant Physiol 54:122–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JW, Chen JJ, Berti WR et al (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Imai I, Siegel SM (1973) A specific response to toxic cadmium levels in red kidney bean embryos. Physiol Plant 29(1):118–120

    Article  CAS  Google Scholar 

  • Islam E, Liu D, Li T et al (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154(1):914–926

    Article  CAS  PubMed  Google Scholar 

  • Israr M, Sahi SV (2006) Antioxidative responses to mercury in the cell cultures of Sesbania drummondii. Plant Physiol Biochem 44(10):590–595

    Article  CAS  PubMed  Google Scholar 

  • Israr M, Sahi S, Datta R et al (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65(4):591–598

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KB, Turner JE (1980) The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicology 16(1):1–37

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar K, Azooz MM, Vijayarengan P et al (2010) Biochemical changes with exogenous cobalt application in soybean. J Phytol 2(1):7–12

    Google Scholar 

  • Jin F, Wang C, Lin HJ et al (2010) Heavy metal-transport proteins in plants: a review. J Appl Ecol 21(7):1875–1882

    CAS  Google Scholar 

  • Jones D, Kochian L (1995) Aluminum inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat roots; a role in aluminum toxicity? Plant Cell 7:1913–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones D, Kochian L (1997) Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. FEBS Lett 400:51–57

    Article  CAS  PubMed  Google Scholar 

  • Kabata-pendias A (2011) Trace elements in soils and plants. CRC Press, London

    Google Scholar 

  • Kagi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Gustin JL, Lahner B et al (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39(2):237–251

    Article  CAS  PubMed  Google Scholar 

  • Kitagishi K, Yamane I (1981) Heavy metal pollution in soils of Japan. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Kloke A, Sauerbeck DR, Vetter H (1984) The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In: Nriagu JO (ed) Changing metal cycles and human health. Springer, Berlin/Heidelberg, pp 113–141

    Chapter  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274(1):175–195

    Article  CAS  Google Scholar 

  • Koeppe DE (1981) Lead: understanding the minimal toxicity of lead in plants. In: Lepp NW (ed) Effect of heavy metal pollution on plants. Springer, Dordrecht, pp 55–76

    Chapter  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122:945–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korenkov V, Hirschi K, Crutchfield JD et al (2007) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226(6):1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Korshunova YO, Eide D, Clark WG et al (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM et al (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635

    Article  Google Scholar 

  • Krämer U, Golldack D, Kiriazidou G et al (1999) Induction of plant pathogenesis-related proteins by heavy metals. In: Proceedings of 5th international conference on the biogeochemistry trace elements, Vienna, July 11–15, 1158

    Google Scholar 

  • Krämer U, Pickering IJ, Prince RC et al (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1354

    Article  PubMed  PubMed Central  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • Krizkova S, Ryant P, Krystofova O et al (2008) Multi-instrumental analysis of tissues of sunflower plants treated with silver (I) ions – plants as bioindicators of environmental pollution. Sensors 8(1):445–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • KrzesBowska M, Rabęda I, Lewandowski M et al (2013) Pb induces plant cell wall modifications-in particular-the increase of pectins able to bind metal ions level. In E3S web of conferences 2013, 1:26008

    Google Scholar 

  • Kumar A (2013) Studies on the effect of tungsten and molybdenum on soil quality parameters and growth and metabolic activities of certain plant species. PhD thesis, Mohanlal Sukhadia University, Udaipur

    Google Scholar 

  • Kumar A, Aery NC (2010) Studies on the effect of tungsten on seed germination and early seedling growth of cowpea. In: Masih MR, Singh B, Pareek DK et al (eds) Natural resource management for sustainable agriculture. Aavishkar Publishers, Jaipur, pp 274–280

    Google Scholar 

  • Kumar A, Aery NC (2011) Effect of tungsten on growth, biochemical constituents, molybdenum and tungsten contents in wheat. Plant Soil Environ 57(11):519–525

    CAS  Google Scholar 

  • Kumar A, Aery NC (2012a) Effect of tungsten on the growth, dry-matter production, and biochemical constituents of cowpea. Commun Soil Sci Plant Anal 43(7):1098–1107

    Article  CAS  Google Scholar 

  • Kumar A, Aery NC (2012b) Influence of tungsten and molybdenum on seed germination and early seedling growth of wheat – a comparative study. NBU J Plant Sci 6(1):1–5

    CAS  Google Scholar 

  • Kuthanová A, Gemperlová L, Zelenková S et al (2004) Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells. Plant Physiol Biochem 42(2):149–156

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov VV, Shevyakova NI (1997) Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiol Plant 100(2):320–326

    Article  CAS  Google Scholar 

  • Lane SD, Martin ES, Garrod JF (1978) Lead toxicity effects on indole-3-acetic acid-induced cell elongation. Planta 144(1):79–84

    Article  CAS  PubMed  Google Scholar 

  • Lanquar V, Lelièvre F, Bolte S et al (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24(23):4041–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen PB, Degenhardt J, Stenzler LM et al (1998) Aluminium-resistant Arabidopsis mutant that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol 117:9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF et al (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 342:71–79

    Article  Google Scholar 

  • Lay PA, Levina A (2014) Chromium. In: Maret W, Wedd A (eds) Binding, transport and storage of metal ions in biological cells. Royal Society of Chemistry, Cambridge, pp 188–222

    Google Scholar 

  • Li X, Zhou Q, Sun X et al (2016) Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars. Food Chem 1(194):101–110

    Article  CAS  Google Scholar 

  • Ling HQ, Koch G, Baumlein H et al (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci U S A 96(12):7098–7103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipsey RL (1975) Accumulation and physiological effects of methyl mercury hydroxide on maize seedlings. Environ Pollut 8(2):149–155

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Wieshammer G et al (2002) In situ fixation of metals in soils using bauxite residue: biological effects. Environ Pollut 118(3):445–452

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Rimmer DL (1995) Zinc-copper interaction affecting plant growth on a metal-contaminated soil. Environ Pollut 88(1):79–83

    Article  PubMed  Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C et al (2001) A fern that hyperaccumulates arsenic. Nature 409(6820):579

    Article  CAS  PubMed  Google Scholar 

  • Macek T, Macková M, Pavlíková D et al (2002) Accumulation of cadmium by transgenic tobacco. Keynote Lect 1:42

    Google Scholar 

  • Macnicol RD, Beckett PHT (1985) Critical tissue concentrations of potentially toxic elements. Plant Soil 85(1):107–129

    Article  CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer, Dordrecht, pp 27–53

    Chapter  Google Scholar 

  • Marschner H (1999) Mineral nutrition in higher plants. Academic, London

    Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Matsumoto H (1991) Biochemical mechanism of the toxicity of aluminum and the sequestration of aluminum in plant cells. In: Wright RJ, Baligar VC, Murrmann RP (eds) Plant-soil interactions at low pH. Kluwer Academic Publishers, Dordrecht, pp 825–838

    Chapter  Google Scholar 

  • Matsumoto H, Hirasawa E, Morimura S et al (1976) Localization of aluminium in tea leaves. Plant Cell Physiol 29:1133–1140

    Google Scholar 

  • Matysik J, Alia B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Maywald F, Weigel HJ (1997) Biochemistry and molecular biology of heavy metals accumulation in higher plants. Landbauforschung-Volkerode 47(3):103–126

    CAS  Google Scholar 

  • McGrath SP (1982) The uptake and translocation of tri- and hexavalent chromium and effects on the growth of oat, in flowing nutrient solution and in soil. New Phytol 92(3):381–390

    Article  CAS  Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB Intern, Oxford, pp 261–287

    Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 8:97–123

    Google Scholar 

  • McKenna IM, Chaney RL, Williams FM (1993) The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environ Pollut 79(2):113–120

    Article  CAS  PubMed  Google Scholar 

  • McKenney DJ, Vriesacker JR (1985) Effect of cadmium contamination on denitrification processes in Brookston clay and Fox sandy loam. Environ Pollut Ser A 38(3):221–233

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Andrews SJ, Smart MK et al (1998) Effects of sulfate on cadmium uptake by Swiss chard: I. Effects of complexation and calcium competition in nutrient solutions. Plant Soil 202:211–216

    Article  CAS  Google Scholar 

  • McNear DH, Afton SE, Caruso JA (2012) Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum. Metallomics 4(3):267–276

    Article  CAS  PubMed  Google Scholar 

  • Mhathre GN, Chaphekar SB (1984) Response of young plants to mercury. Water Air Soil Pollut 21(1–4):1–8

    Article  Google Scholar 

  • Migocka M, Papierniak A, Kosatka E et al (2011) Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber root cells. J Exp Bot 62(14):4903–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mildvan AS (1970) Metals in enzymes catalysis. In: Boyer DD (ed) The enzymes, vol II. Academic, London, pp 445–536

    Google Scholar 

  • Monferrán MV, Wunderlin DA (2013) Biochemistry of metals/metalloids toward remediation process. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin/Heidelberg, pp 43–71

    Chapter  Google Scholar 

  • Montanini B, Blaudez D, Jeandroz S et al (2007) Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8(1):1–16

    Article  CAS  Google Scholar 

  • Moreira OC, Rios PF, Barrabin H (2005) Inhibition of plasma membrane Ca2+-ATPase by CrATP. LaATP but not CrATP stabilizes the Ca2+-occluded state. BBA-Bioenerg 3:411–419

    Article  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A et al (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149(2):894–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motesharezadeh B, Savaghebi GH (2012) Interaction between cadmium and lead and the effects of these on the concentration of zinc and manganese in sunflower. Int J Environ Res 6(3):793–800

    CAS  Google Scholar 

  • Mukhopadhyah N, Aery NC (2000) Effect of Cr(III) and Cr(VI) on the growth and physiology of Triticum aestivum plants during early seedling growth. Biologia 55(4):403–408

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TV (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Naidu BP, Paleg LG, Aspinall D et al (1991) Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry 30(2):407–409

    Article  CAS  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y et al (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52(4):464–469

    Article  CAS  Google Scholar 

  • Nan Z, Zhao C, Li J et al (2002) Relations between soil properties and selected heavy metal concentrations in spring wheat (Triticum aestivum L.) grown in contaminated soils. Water Air Soil Pollut 133(1–4):205–213

    Article  CAS  Google Scholar 

  • Nedkovska M, Atanassov AI (1995) Metallothionein genes and expression for heavy metal resistance. Biotechnol Biotech Equip 11(2):11–16

    Google Scholar 

  • Nieboer E, Richardson DH (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut B 1(1):3–26

    Article  CAS  Google Scholar 

  • Nies DH (1992) Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27:17–28

    Article  CAS  PubMed  Google Scholar 

  • Nishida S, Mizuno T, Obata H (2008) Involvement of histidine-rich domain of ZIP family transporter TjZNT1 in metal ion specificity. Plant Physiol Biochem 46(5):601–606

    Article  CAS  PubMed  Google Scholar 

  • Niu ZC, Zhang XS, Wang ZW et al (2011) Field controlled experiments of mercury accumulation in crops from air and soil. Environ Pollut 159:2684–2689

    Article  CAS  PubMed  Google Scholar 

  • Nocito FF, Espen L, Crema B et al (2008) Cadmium induces acidosis in maize root cells. New Phytol 179(3):700–711

    Article  PubMed  Google Scholar 

  • O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275(33):25057–25060

    Article  PubMed  Google Scholar 

  • Ozoliniya GR (1986) Influence of copper, cobalt and silver ions on total growth of grass roots. Mikroelem in USSR 27:72

    Google Scholar 

  • Paleg LG, Aspinall D (1981) The physiology and biochemistry of drought resistance in plants. Academic, London

    Google Scholar 

  • Palmiter RD, Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14(4):639–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panchal J, Aery NC (2008) Effects of manganese waste on growth, nodulation, proline levels, and enzymatic activities in Vigna unguiculata (L.) Wal. Toxicol Environ Chem 90(6):1063–1072

    Article  CAS  Google Scholar 

  • Papernik L, Bethea A, Singleton T et al (2001) Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat. Planta 212:829–834

    Article  CAS  PubMed  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136(3):3814–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422

    Article  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B et al (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52(3):199–223

    Article  CAS  Google Scholar 

  • Pavlı́ková D, Macek T, Macková M et al (2004) Cadmium tolerance and accumulation in transgenic tobacco plants with a yeast metallothionein combined with a polyhistidine tail. Int Biodeterior Biodegrad 54(2):233–237

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Gardea-Torresdey JL, Gomez E et al (2002) Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ Pollut 119(3):291–301

    Article  CAS  PubMed  Google Scholar 

  • Pich A, Manteuffel R, Hillmer S et al (2001) Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Planta 213(6):967–976

    Article  CAS  PubMed  Google Scholar 

  • Pineros MA, Kochian LV (2001) A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al (3+)-induced anion channels. Plant Physiol 125:292–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineros M, Tester M (1995) Characterization of a voltage dependent Ca2+-selective channel from wheat roots. Planta 195:478–488

    Article  CAS  Google Scholar 

  • Poschenrieder C, Cabot C, Martos S et al (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    Article  CAS  Google Scholar 

  • Prasad MNV (2005) Heavy metal stress in plants: Metallomics approach for phytoremediation. In: Chakraborty U, Chakraborty B (eds) Stress biology. Narosa Publishing House, New Delhi, pp 21–26

    Google Scholar 

  • Ramos I, Esteban E, Lucena JJ et al (2002) Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Sci 162:761–767

    Article  CAS  Google Scholar 

  • Ramos-Díaz A, Brito-Argáez L, Munnik T et al (2007) Aluminum inhibits phosphatidic acid formation by blocking the phospholipase C pathway. Planta 225(2):393–401

    Article  PubMed  CAS  Google Scholar 

  • Rana D, Aery NC (1999) Effect of Al stress on the biochemical constituents during early seedling growth of mustard. Bionature 19(2):47–50

    Google Scholar 

  • Rana DK, Aery NC (2000) Influence of aluminium on the growth performance and chlorophyll contents of wheat. Vasundhra 5:63–68

    Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals-using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18(1):89–108

    Article  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  CAS  PubMed  Google Scholar 

  • Reisinger S, Schiavon M, Terry N et al (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial gamma-glutamylcysteine synthetase or glutathione synthetase. Int J Phytorem 10(5):440–454

    Article  CAS  Google Scholar 

  • Rengel Z, Elliott DC (1992) Mechanism of aluminium inhibition of net 45Ca2+ uptake by Amaranthus protoplasts. Plant Physiol 98:632–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revathi S, Venugopal S (2013) Physiological and biochemical mechanisms of heavy metal tolerance. Int J Environ Sci 3(5):1339–1352

    CAS  Google Scholar 

  • Roderer G (1984) Toxic effects in plant organisms. In: Grandjean P (ed) Biological effects of organolead compounds. CRC Press, Boca Raton, pp 63–95

    Google Scholar 

  • Ryan PR, Kochian LV (1993) Interaction between aluminum toxicity and calcium uptake at the root apex in near-isogenic lines of wheat (Triticum aestivum L.) differing in aluminum tolerance. Plant Physiol 102:975–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan P, DiTomaso J, Kochian L (1993) Aluminum toxicity in roots: An investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446

    Article  CAS  Google Scholar 

  • Ryu SK, Park JS, Lee ISK (2003) Purification and characterization of a copper binding protein from Asian periwinkle Littorina brevicula. Comp Biochem Physiol 134(1):101–107

    Article  Google Scholar 

  • Salisbury FB, Ross C (1978) Plant physiology. Wadsworth Publishing Company, Belmont

    Google Scholar 

  • Salt DE, Prince RC, Pickering IJ et al (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109(4):1427–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salt DE, Prince RC, Baker AJM et al (1999) Zinc ligands in the metal accumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Tech 33(5):713–717

    Article  CAS  Google Scholar 

  • Sappin-Didier V, Vansuyts G, Mench M et al (2005) Cadmium availability at different soil pH to transgenic tobacco overexpressing ferritin. Plant Soil 270(1):189–197

    Article  CAS  Google Scholar 

  • Sarkar S, Aery NC (1988) Studies on the deranged physiology of soybean under the influence of heavy metal stress. II Effects of cadmium on growth performance. Ind Bot Control 5:113–118

    CAS  Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O et al (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavon M, Pilon-Smits EAH, Wirtz M et al (2008) Interaction between chromium and sulfur metabolism in Brassica juncea. J Environ Qual 37:1536–1545

    Article  CAS  PubMed  Google Scholar 

  • Schmohl N, Horst WJ (2000) Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cells grown in suspension culture. Plant Cell Environ 23(7):735–742

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal‐induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    Article  PubMed  Google Scholar 

  • Schwarzerová K, Zelenková S, Nick P et al (2002) Aluminum-induced rapid changes in the microtubular cytoskeleton of tobacco cell lines. Plant Cell Physiol 43(2):207–216

    Article  PubMed  Google Scholar 

  • Senden MN, Van der Meer AM, Verburg TG et al (1995) Citric acid in tomato plant roots and its effect on cadmium uptake and distribution. Plant Soil 171:333–339

    Article  CAS  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48(4):523–544

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ 39(5):1112–1126

    Article  CAS  PubMed  Google Scholar 

  • Siegel BZ, Lasconia M, Yaeger E et al (1984) The phytotoxicity of mercury vapor. Water Air Soil Pollut 23:15–24

    Article  CAS  Google Scholar 

  • Silva IR, Smyth TJ, Moxley DF et al (2000) Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 123(2):543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions-a review. Gene 179(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Singh AD, Aery NC (1993) Accumulation and seasonal variation in the zinc and lead content of certain plant species. Acta Ecol 15(1):51–57

    Google Scholar 

  • Singh N, Ma LQ (2006) Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L. Environ Pollut 141(2):238–246

    Article  CAS  PubMed  Google Scholar 

  • Sinha P, Dube BK, Chatterjee C (2006) Manganese stress alters phytotoxic effects of chromium in green gram physiology (Vigna radiata L.) cv. PU 19. Environ Exp Bot 57:131–138

    Article  CAS  Google Scholar 

  • Sivaguru M, Horst W (1998) The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol 116:155–163

    Article  CAS  PubMed Central  Google Scholar 

  • Sivaguru M, Baluska F, Volkmann D et al (1999) Impacts of aluminium on the cytoskeleton of the maize root apex, short-term effects on the distal part of the transition zone. Plant Physiol 119:1073–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaguru M, Fujiwara T, Samaj J et al (2000) Aluminum-induced 1– > 3beta-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124:991–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaguru M, Pike S, Gassmann W et al (2003) Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol 44:667–675

    Article  CAS  PubMed  Google Scholar 

  • Smeyers-Verbeke J, de Graeve M, Francois M et al (1978) Cd uptake by intact wheat plants. Plant Cell Environ 1(4):291–296

    Article  Google Scholar 

  • Sors TG, Martin CP, Salt DE (2009) Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J 59(1):110–122

    Article  CAS  PubMed  Google Scholar 

  • Sorterberg A (1980) The effect of some heavy metals on oats in pot experiments with three different soil types. J Sci Agric Soc Finl 46:277–288

    Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336

    Article  CAS  PubMed  Google Scholar 

  • Stolt JP, Sneller FE, Bryngelsson T et al (2003) Phytochelatin and cadmium accumulation in wheat. Environ Exp Bot 49(1):21–28

    Article  CAS  Google Scholar 

  • Su YH, McGrath SP, Zhu YG et al (2008) Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol 180(2):434–441

    Article  CAS  PubMed  Google Scholar 

  • Sun R, Zhou Q, Jin C (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L as a newly found cadmium hyperaccumulator. Plant Soil 285(1–2):125–134

    Article  CAS  Google Scholar 

  • Suzuki N (2005) Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnol 22:19–25

    Article  CAS  Google Scholar 

  • Tabuchi A, Matsumoto H (2001) Changes in cell wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant 112:353–358

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant Physiology. Sinauer Associates, Sunderland

    Google Scholar 

  • Takahashi M, Terada Y, Nakai I et al (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15(6):1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142(1):148–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. doi:10.1155/2011/939161

    Google Scholar 

  • Thomine S, Wang R, Ward JM et al (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97(9):4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomine S, Lelièvre F, Debarbieux E et al (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34(5):685–695

    Article  CAS  PubMed  Google Scholar 

  • Tiagi YD, Aery NC (1986) Biogeochemical studies at the Khetri copper deposits of Rajasthan, India. J Geochem Explor 26(3):267–274

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S et al (2007) Arsenic hazards: strategies for tolerance and remediation by plants. TRENDS Biotechnol 25(4):158–165

    Article  CAS  PubMed  Google Scholar 

  • Tukendorf A, Baszynki T (1991) The in vivo effect of cadmium on photochemical activities in chloroplasts of runner bean plants. Acta Physiol Plant 13:51

    CAS  Google Scholar 

  • Turner MA (1973) Effect of cadmium treatment on cadmium and zinc uptake by selected vegetable species. J Environ Qual 2(1):118–119

    Article  CAS  Google Scholar 

  • Turner MA, Rust RH (1971) Effect of chromium on growth and mineral nutrition of soybeans. Soil Sci Soc Am Proc 35(5):755–758

    Article  CAS  Google Scholar 

  • van de Mortel JE, Villanueva LA, Schat H et al (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142(3):1127–1147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varga A, Záray G, Fodor F et al (1997) Study of interaction of iron and lead during their uptake process in wheat roots by total-reflection X-ray fluorescence spectrometry. Spectrochim Acta B At Spectrosc 52(7):1027–1032

    Article  Google Scholar 

  • Vazquez MD, Lopez J, Carballeira A (1999) Uptake of heavy metals to the extracellular and intracellular compartments in three species of aquatic bryophyte. Ecotoxicol Environ Safe 44(1):12–24

    Article  CAS  Google Scholar 

  • Verkleij JA, Sneller FE, Schat H (2003) Metallothioneins and phytochelatins: ecophysiological aspects. In: Abrol YP, Ahmad A (eds) Sulphur in plants. Springer, Dordrecht, pp 163–176

    Chapter  Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68(8):1563–1575

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F et al (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace A, Romney EM, Alexander GV et al (1977) Some interactions in plants among cadmium, other heavy metals, and chelating agents. Agron J 69(1):18–20

    Article  CAS  Google Scholar 

  • Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Environ Qual 33(5):1779–1785

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Li T, Liu GY et al (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: Physiological, cytological and genetic aspects. Sci Rep 6. doi:10.1038/srep22028

  • Wedepohl KH (1974) Handbook of geochemistry. Springer Verlag, Berlin

    Book  Google Scholar 

  • Williams DJ, Hall KB (2000) Experimental and computational studies of the G[UUCG]C RNA tetraloop. J Mol Biol 297(5):1045–1061

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim et Biophys Acta- Biomembr 1465(1):104–126

    Article  CAS  Google Scholar 

  • Wilson DO, Cline JF (1966) Removal of plutonium-239, tungsten-185 and lead-210 from soils. Nature 209:941–942

    Article  CAS  Google Scholar 

  • Winge DR, Nielson KB, Gray WR et al (1985) Yeast metallothionein. Sequence and metal-binding properties. J Biol Chem 260(27):14464–14470

    CAS  PubMed  Google Scholar 

  • Wojas S, Ruszczyńska A, Bulska E et al (2007) Ca2+-dependent plant response to Pb2+ is regulated by LCT1. Environ Pollut 147(3):584–592

    Article  CAS  PubMed  Google Scholar 

  • Woźny A (1998) Lead in plants- penetration, distribution, reactions. In: Kabata-Pendias A, Szteke B (eds) Lead in the environment-ecological and analytical problems, PAN Kom. Nauk 21:171–180

    Google Scholar 

  • Wu F, Zhang G, Yu J (2003) Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes. Commun Soil Sci Plant Anal 34(13–14):2003–2020

    Article  CAS  Google Scholar 

  • Xu J, Yin H, Li X (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28(2):325–333

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125(1):199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR et al (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128(1):63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XE, Long XX, Ni WZ (2002) Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulating plant species. J Plant Nutr Fertil 8(1):8–15

    Google Scholar 

  • Yang X, Feng Y, He Z et al (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Bio 18(4):339–353

    Article  CAS  Google Scholar 

  • Yang J, Liu Z, Wan X et al (2016) Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant. Ecotoxicol Environ Saf 128:206–212

    Article  CAS  PubMed  Google Scholar 

  • Yathavakilla SK, Caruso JA (2007) A study of Se-Hg antagonism in Glycine max (soybean) roots by size exclusion and reversed phase HPLC–ICPMS. Anal Bioanal Chem 389(3):715–723

    Article  CAS  PubMed  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249(1):139–156

    Article  CAS  Google Scholar 

  • Zayed A, Lytle CM, Qian JH et al (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206(2):293–299

    Article  CAS  Google Scholar 

  • Zhou J, Ma D, Pan J et al (2008) Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: a case study in Yangzhong, China. Environ Geol 54(2):373–380

    Article  CAS  Google Scholar 

  • Zimdahl RL (1976) Entry and movement in vegetation of lead derived from air and soil sources. J Air Pollut Control Assoc 26(7):655–660

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kumar, A., Aery, N.C. (2016). Impact, Metabolism, and Toxicity of Heavy Metals in Plants. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_7

Download citation

Publish with us

Policies and ethics