Skip to main content
Log in

Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the eigenvalue problem for a Hartree-type operator with a screened Coulomb self-action potential and with a small parameter multiplying the nonlinearity. We obtain asymptotic eigenvalues and asymptotic eigenfunctions near the upper boundaries of spectral clusters that form near the energy levels of the unperturbed operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Debye and E. Hückel, “Zur Theorie der Elektrolyte,” Phys. Z., 24, 185–206 (1923).

    MATH  Google Scholar 

  2. N. Bohr, “The penetration of atomic particles through matter,” Det Kgl. Danske Vidensk. Selsk. Math.-Fys. Medd., 18, 1–114 (1948).

    MATH  Google Scholar 

  3. H. Jukawa, “On the interaction of elementary particles. I,” Proc. Phys. Math. Soc. Japan, 17, 48–57 (1935).

    Google Scholar 

  4. N. N. Bogolyubov, “On a new form of the adiabatic theory of disturbances in the problem of interaction of particles with a quantum field,” Ukr. Math. J., 2, 3–24 (1950).

    MathSciNet  Google Scholar 

  5. L. P. Pitaevskii, “Bose–Einstein condensation in magnetic traps. Introduction to the theory,” Phys. Usp., 41, 569–580 (1998).

    Article  Google Scholar 

  6. S. A. Achmanov, R. V. Hocklov, and A. P. Suchorukov, “Self-defocusing and self-modulation in nonlinear media,” in: Laserhandbuch, Vol. 2 (F. T. Arecchi and E. O. Schulz-Dubois, eds.), North-Holland, Amsterdam (1972), pp. 5–108.

    Google Scholar 

  7. V. P. Maslov, The Complex WKB Method for Nonlinear Equations I (Progress in Mathematical Physics, Vol. 16), Birkhaüser, Basel (1994).

    Book  Google Scholar 

  8. I. V. Simenog, “Asymptotic solution of stationary nonlinear Hartree equation,” Theoret. and Math. Phys., 30, 263–268 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  9. M. V. Karasev and A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. II. Localization in planar discs,” Izv. Math., 65, 1127–1168 (2001).

    Article  MathSciNet  Google Scholar 

  10. V. V. Belov, F. N. Litvinets, and A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system,” Theoret. and Math. Phys., 150, 21–33 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Brüning, S. Yu. Dobrokhotov, R. V. Nekrasov, and A. I. Shafarevich, “Propagation of Gaussian wave packets in thin periodic quantum waveguides with a nonlocal nonlinearity,” Theoret. and Math. Phys., 155, 689–707 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. V. Pereskokov, “Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters,” Theoret. and Math. Phys., 178, 76–92 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  13. A. V. Pereskokov, “Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle,” Theoret. and Math. Phys., 183, 516–526 (2015).

    Article  MathSciNet  ADS  Google Scholar 

  14. A. V. Pereskokov, “Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters,” Theoret. and Math. Phys., 187, 511–524 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  15. L. I. Schiff, Quantum Mechanics, McGraw-Hill, London (1955).

    MATH  Google Scholar 

  16. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York–Toronto–London (1953).

    MATH  Google Scholar 

  17. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. V. 1: Elementary Functions, Gordon and Breach, New York (1986).

    MATH  Google Scholar 

  18. G. Szegö, Orthogonal Polynomials (Amer. Math. Soc. Colloq. Publ., Vol. 23), Amer. Math. Soc., Providence, RI (1959).

    MATH  Google Scholar 

  19. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 2: Special Functions, Gordon and Breach, New York (1986).

    MATH  Google Scholar 

Download references

Acknowledgments

The author thanks D. A. Vakhrameeva for the useful discussions of the results in this paper.

Funding

The work is supported by the Russian Science Foundation (Grant No. 19-11-00033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pereskokov.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 543–560 https://doi.org/10.4213/tmf10127.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereskokov, A.V. Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters. Theor Math Phys 209, 1782–1797 (2021). https://doi.org/10.1134/S0040577921120096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921120096

Keywords

Navigation