Skip to main content
Log in

Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton-Ehrenfest system

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the classical equations of motion in quantum means, i.e., the Hamilton-Ehrenfest system. In the semiclassical approximation in the framework of the covariant approach based on these equations, we construct the spectral series of a nonlinear Hartree-type operator corresponding to a rest point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Karasev and V. P. Maslov, Nonlinear Poisson Brackets: Geometry and Quantization [in Russian], Nauka, Moscow (1991); English transl., Amer. Math. Soc., Providence, R. I. (1993).

    MATH  Google Scholar 

  2. S. P. de Groot and L. G. Suttirp, Foundations of Electrodynamics, North-Holland, Amsterdam (1972).

    Google Scholar 

  3. Y. Lai and H. A. Haus, Phys. Rev. A, 40, 844–853, 854–866 (1989).

    Article  ADS  Google Scholar 

  4. L. P. Pitaevskii, Phys. Usp., 41, 569–580 (1998).

    Article  Google Scholar 

  5. A. S. Davydov, Solitons in Molecular Systems [in Russian], Naukova Dumka, Kiev (1984); English transl., Reidel, Dordrecht (1985).

    Google Scholar 

  6. M. Born, Z. Phys., 38, 803–827 (1926); P. Ehrenfest, Z. Phys., 45, 455–457 (1927).

    Article  Google Scholar 

  7. V. P. Maslov, Theorie des perturbations et methodes asymptotiques [in Russian], Moscow State Univ., Moscow (1965); French transl., Dunod, Paris (1972); V. P. Maslov and M. V. Fedoryuk, Semi-Classical Approximation in Quantum Mechanics [in Russian], Nauka, Moscow (1976); English transl., Kluwer, Dordrecht (1981).

    Google Scholar 

  8. V. P. Maslov, Asymptotic Methods and Perturbation Theory [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

  9. V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow (1973); English transl.: Operational Methods, Mir, Moscow (1976).

    Google Scholar 

  10. V. P. Maslov, Complex WKB Method for Nonlinear Equations [in Russian], Nauka, Moscow (1977); English transl.: ComplexWKB Method for Nonlinear Equations: I. Linear Theory, Birkhäuser, Basel (1994); V. V. Belov and S. Yu. Dobrokhotov, Theor. Math. Phys., 92, 843–868 (1992).

    Google Scholar 

  11. M. V. Karasev and A. V. Pereskokov, Theor. Math. Phys., 79, 479–486 (1989); 97, 1160–1170 (1993); Izv. Math., 65, 883–921 (2001); 65, 1127–1168 (2001); M. V. Karasev and V. P. Maslov, J. Sov. Math., 15, 273–368 (1981).

    Article  MathSciNet  Google Scholar 

  12. V. V. Belov, A. Yu. Trifonov, and A. V. Shapovalov, Int. J. Math. Math. Sci., 32, No. 6, 325–370 (2002).

    Article  MathSciNet  Google Scholar 

  13. V. V. Belov, A. Yu. Trifonov, and A. V. Shapovalov, Theor. Math. Phys., 130, 391–418 (2002).

    Article  MathSciNet  Google Scholar 

  14. A. L. Lisok, A. Yu. Trifonov, and A. V. Shapovalov, J. Phys. A, 37, 4535–4556 (2004); Theor. Math. Phys., 141, 1528–1541 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. L. Lisok, A. Yu. Trifonov, and A. V. Shapovalov, Proc. Inst. Math. NAS Ukr., 50, 1454–1465 (2004); Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 1, 007 (2005); F. N. Litvinets, A. V. Shapovalov, and A. Yu. Trifonov, J. Phys. A, 39, 1191–1206 (2006).

    MathSciNet  Google Scholar 

  16. V. G. Bagrov, V. V. Belov, and A. Yu. Trifonov, Ann. Phys. (NY), 246, 231–280 (1996); “Semiclassical concentrated states of the Schrödinger equation,” in: Lecture Notes in Theoretical and Mathematical Physics (A. V. Aminova, ed.), Vol. 1, Part 1, Izd-vo BOG, Kazan (1996), pp. 15–136.

    Article  ADS  MathSciNet  Google Scholar 

  17. V. V. Belov and M. F. Kondrat’eva, Math. Notes, 56, 1228–1236 (1994); 58, 1251–1261 (1995).

    Article  MathSciNet  Google Scholar 

  18. V. G. Bagrov, V. V. Belov, and M. F. Kondrat’eva, Theor. Math. Phys., 98, 34–38 (1994); V. G. Bagrov et al., J. Moscow Phys. Soc., 3, 309–320 (1993); “The quasiclassical localization of the states and a new approach of quasi-classical approximation in quantum mechanics,” in: Particle Physics, Gauge Fields, and Astrophysics (A. I. Studenikin, ed.), Accademia Nazilonale dei Lincei, Rome (1994), pp. 132–142; V. G. Bagrov, V. V. Belov, and A. Yu. Trifonov, “New methods for semiclassical approximation in quantum mechanics, ” in: Proc. Intl. Workshop “Quantum Systems: New Trends and Methods” (A. O. Barut, I. D. Feranchuk, Ya. M. Shnir, and L. M. Tomil’chik, eds.), World Scientific, Singapore (1995), pp. 533–543.

    Article  MathSciNet  Google Scholar 

  19. M. A. Malkin and V. I. Man’ko, Dynamical Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979); A. M. Perelomov, Generalized Coherent States and Their Applications, Springer, Berlin (1986).

    Google Scholar 

  20. V. G. Bagrov, V. V. Belov, and I. M. Ternov, Theor. Math. Phys., 50, 256–261 (1982); J. Math. Phys., 24, 2855–2859 (1983); V. V. Belov and V. P. Maslov, Sov. Phys. Dokl., 34, 220–223 (1989); 35, 330–332 (1990); V. G. Bagrov, V. V. Belov, and A. Yu. Trifonov, “Semiclassical trajectory-coherent approximation in quantum mechanics: II. High order corrections to the Dirac operators in external electromagnetic field,” quant-ph/9806017 (1998); V. V. Belov and M. F. Kondrat’eva, Theor. Math. Phys., 92, 722–735 (1992); V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, and A. A. Yevseyevich, Class. Q. Grav., 8, 515–527, 1349–1359, 1833–1846 (1991); V. G. Bagrov, A. Yu. Trifonov, and A. A. Yevseyevich, Class. Q. Grav., 9, 533–543 (1992).

    Article  MathSciNet  Google Scholar 

  21. H. Bateman and A. Erd’elyi, eds., Higher Transcendental Functions (Based on notes left by H. Bateman), Vol. 2, McGraw-Hill, New York (1953).

    Google Scholar 

  22. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevsky, and V. E. Zakharov, Plenum, New York (1984); M. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).

    MATH  Google Scholar 

  23. I. V. Simenog, Theor. Math. Phys., 30, 263–268 (1977).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 150, No. 1, pp. 26–40, January, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belov, V.V., Litvinets, F.N. & Trifonov, A.Y. Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton-Ehrenfest system. Theor Math Phys 150, 21–33 (2007). https://doi.org/10.1007/s11232-007-0003-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0003-6

Keywords

Navigation