Skip to main content
Log in

Quadratic algebras based on \(SL(NM)\) elliptic quantum \(R\)-matrices

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a quadratic quantum algebra based on the dynamical \(RLL\)-relation for the quantum \(R\)-matrix related to \(SL(NM)\)-bundles with a nontrivial characteristic class over an elliptic curve. This \(R\)-matrix simultaneously generalizes the elliptic nondynamical Baxter–Belavin and the dynamical Felder \(R\)-matrices, and the obtained quadratic relations generalize both the Sklyanin algebra and the relations in the Felder–Tarasov–Varchenko elliptic quantum group, which are reproduced in the respective particular cases \(M=1\) and \(N=1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Baxter, “Partition function of the Eight-Vertex lattice model,” Ann. Phys., 70, 193–228 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  2. A. A. Belavin, “Dynamical symmetry of Integrable quantum systems,” Nucl. Phys. B, 180, 189–200 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  3. E. K. Sklyanin, “Some algebraic structures connected with the Yang–Baxter equation,” Funct. Anal. Appl., 16, 263–270 (1982).

    Article  MathSciNet  Google Scholar 

  4. A. V. Odesskii and B. L. Feigin, “Sklyanin elliptic algebras,” Funct. Anal. Appl., 23, 207–214 (1989).

    Article  MathSciNet  Google Scholar 

  5. Y.-H. Quano and A. Fujii, “Generalized Sklyanin algebra,” Modern Phys. Lett. A, 6, 3635–3640 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. V. Zotov, A. M. Levin, M. A. Olshanetsky, and Yu. B. Chernyakov, “Quadratic algebras related to elliptic curves,” Theoret. and Math. Phys., 156, 1103–1122 (2008), arXiv:0710.1072; H. W. Braden, V. A. Dolgushev, M. A. Olshanetsky, and A. V. Zotov, “Classical \(r\)-matrices and the Feigin–Odesskii algebra via Hamiltonian and Poisson reductions,” J. Phys. A: Math. Gen., 36, 6979–7000 (2003), arXiv:hep-th/0301121; B. Khesin, A. Levin, and M. Olshanetsky, “Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus,” Commun. Math. Phys., 250, 581–612 (2004), arXiv:nlin/0309017 [nlin.SI].

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Felder, “Conformal field theory and integrable systems associated with elliptic curves,” in: Proceedings of the International Congress of Mathematicians (Zürich, Switzerland, August 3–11, 1994), Vols. 1, 2 (S. D. Chatterji, ed.), Birkhäuser, Basel (1995), pp. 1247–1255; G. Felder and A. Varchenko, “Elliptic quantum groups and Ruijsenaars models,” J. Stat. Phys., 89, 963–980 (1997), arXiv:q-alg/9704005.

    Article  MathSciNet  Google Scholar 

  8. V. O. Tarasov and A. N. Varchenko, “Small elliptic quantum group \(e_{\tau,\gamma}(\mathfrak{sl}_N)\),” Mosc. Math. J., 1, 243–286 (2001); arXiv:math/0011145 [math.QA].

    Article  MathSciNet  Google Scholar 

  9. A. Levin, M. Olshanetsky, A. Smirnov, and A. Zotov, “Characteristic classes of \(SL(N,\mathbb C)\)-bundles and quantum dynamical elliptic \(R\)-matrices,” J. Phys. A: Math. Theor., 46, 035201, 25 pp. (2013), arXiv:1208.5750; A. V. Zotov and A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems,” Theoret. and Math. Phys., 177, 1281–1338 (2013); I. A. Sechin and A. V. Zotov, “\({\rm GL}_{NM}\) quantum dynamical \(R\)-matrix based on solution of the associative Yang–Baxter equation,” Russian Math. Surveys, 74, 767–769 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  10. I. Sechin and A. Zotov, “\(R\)-matrix-valued Lax pairs and long-range spin chains,” Phys. Lett. B, 781, 1–7 (2018), arXiv:1801.08908; A. Grekov and A. Zotov, “On \(R\)-matrix valued Lax pairs for Calogero–Moser models,” J. Phys. A, 51, 315202, 26 pp. (2018), arXiv:1801.00245; A. Grekov, I. Sechin, and A. Zotov, “Generalized model of interacting integrable tops,” JHEP, 10, 081, 32 pp. (2019), arXiv:1905.07820.

    Article  ADS  MathSciNet  Google Scholar 

  11. A. V. Zotov, “Relativistic interacting integrable elliptic tops,” Theoret. and Math. Phys., 201, 1565–1580 (2019), arXiv:1910.0824; I. A. Sechin and A. V. Zotov, “Integrable system of generalized relativistic interacting tops,” Theoret. and Math. Phys., 205, 1291–1302 (2020), arXiv:2011.09599.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This research is supported by a grant from the Russian Science Foundation (Project No. 21-41-09011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zotov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 208, pp. 355-364 https://doi.org/10.4213/tmf10100.

Appendix A. Elliptic functions and their properties

In the definitions of \(R\)-matrices in this paper, we use the Kronecker elliptic functions

$$\begin{aligned} \, &\varphi_\alpha(u,x+\omega_\alpha) =\phi(u,x+\omega_\alpha)e^{(2\pi i/N)\alpha_2u},\qquad \omega_\alpha=\frac{\alpha_1+\alpha_2\tau}{N}, \\ &\phi(u,x)=\frac{\theta'(0)\theta(u+x)}{\theta(u)\theta(x)}, \end{aligned} $$
(A.1)
which are expressed through the odd theta function
$$\theta(u)=-\sum_{k\in\mathbb Z} \exp\biggl(\pi i\tau\biggl(k+\frac{1}{2}\biggr)^{\!2} +2\pi i\biggl(k+\frac{1}{2}\biggr) \biggl(u+\frac{1}{2}\biggr)\biggr). $$
(A.2)
Here, \(\tau\) — a complex parameter with \(\operatorname{Im}\tau>0\) — is the modular parameter of the elliptic curve underlying all elliptic functions

The main tool for the derivation of the quadratic relations is the addition formula (also known as the genus-one Fay identity) for the Kronecker functions

$$\phi(z,x)\phi(w,y)=\phi(z-w,x)\phi(w,x+y) +\phi(w-z,y)\phi(z,x+y) $$
(A.3)
and its degenerations corresponding to coincident values of variables
$$\begin{aligned} \, &\phi(z,x)\phi(z,y)=\phi(z,x+y)(E_1(z)+E_1(x)+E_1(y)-E_1(x+y+z)), \\ &\phi(z,x)\phi(z,-x)=E_2(z)-E_2(x), \end{aligned} $$
(A.4)
where the Eisenstein functions are used:
$$E_1(z)=\frac{\theta'(z)}{\theta(z)},\qquad E_2(z)=-E_1'(z) $$
(A.5)
In the definition of the Baxter–Belavin quantum \(R\)-matrix, the basis matrices \(T_\alpha\) are used. They are defined as
$$\begin{aligned} \, &T_\alpha=T_{(\alpha_1, \alpha_2)} =e^{\pi i\alpha_1\alpha_2/N}Q^{\alpha_1}\Lambda^{\alpha_2}, \\ &Q_{jk}=\delta_{jk}e^{2\pi ik/N},\qquad \Lambda_{jk}=\begin{cases} 1, &j+1=k\mod N, \\ 0 &\text{otherwise}. \end{cases} \end{aligned} $$
(A.6)

Appendix B. An example of calculation verifying the $$RLL$$ -relation

We consider, for example, the \((E_{ij})_a(E_{ik})_b\)-component of the \(RLL\)-relation:

$$\begin{aligned} \, R_{12}^{\mathrm{BB}}(\hbar,z_{12}) L_1^{ij}(z_1) L_2^{ik}(z_2) &=L_2^{ik}(z_2)L_1^{ij}(z_1)\phi(\hbar,-q_{jk}^{\{1\}})+L_2^{ij}(z_2) L_1^{ik}(z_1) R_{12}^{\mathrm{BB}}(q^{\{1\}}_{kj},z_{12}),\qquad j\ne k. \end{aligned}$$
(B.1)
This relation is given in \((N\times N)\)-matrices. Decomposing it in the basis \(T_\alpha\), we obtain the following scalar relations in components \((T_\alpha)_1(T_\beta)_2\) (after canceling all exponential factors):
$$\begin{aligned} \, &\theta(z_2+q_i^{\{2\}}-q_k^{\{1\}}+\omega_\beta)t_{ki}^\beta \cdot\theta(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_\alpha)t_{ji}^\alpha \cdot\phi(\hbar,-q_{jk}^{\{1\}})= \\ &=\sum_\gamma\varkappa_{\gamma \alpha} \varkappa_{\beta \gamma}[\phi(z_{12},\hbar+\omega_\gamma) \theta(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma})\times{} \\ &\hphantom{={}}\times t_{ji}^{\alpha-\gamma}\theta(z_2+q_i^{\{2\}} -q_k^{\{1\}}+\omega_{\beta+\gamma})t_{ki}^{\beta+\gamma} -\theta(z_2+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma})\times{} \\ &\hphantom{={}}\times t_{ji}^{\alpha-\gamma} \theta(z_1+q_i^{\{2\}}-q_k^{\{1\}}+\omega_{\beta+\gamma}) t_{ki}^{\beta+\gamma}\phi(z_{12},q_{kj}^{\{1\}} +\omega_{\alpha-\beta-\gamma})]. \end{aligned}$$
Moving all \(t_{ab}\) to the right yields
$$\begin{aligned} \, &\theta(z_2+q_i^{\{2\}}-q_k^{\{1\}}+\omega_\beta) \theta(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\hbar+\omega_\alpha) \phi(\hbar,-q_{jk}^{\{1\}})t_{ki}^\beta t_{ji}^\alpha= \\ &=\sum_\gamma\varkappa_{\gamma\alpha}\varkappa_{\beta\gamma} [\phi(z_{12},\hbar+\omega_\gamma) \theta(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma})\times{} \\ &\hphantom{={}}\times\theta(z_2+q_i^{\{2\}}-q_k^{\{1\}}+\hbar+\omega_{\beta+\gamma})-{} \\ &\hphantom{={}}-\theta(z_2+q_i^{\{2\}} -q_j^{\{1\}}+\omega_{\alpha-\gamma}) \theta(z_1+q_i^{\{2\}}-q_k^{\{1\}}+\hbar+\omega_{\beta+\gamma})\times{} \\ &\hphantom{={}}\times\phi(z_{12},q_{kj}^{\{1\}}+\omega_{\alpha-\beta-\gamma})] t_{ji}^{\alpha-\gamma}t_{ki}^{\beta+\gamma}. \end{aligned}$$
We divide both sides by \(\theta(z_2+q_i^{\{2\}}-q_k^{\{1\}}+\omega_\beta) \theta(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\hbar+\omega_\alpha)\) and consider the expression in the brackets in the right-hand side. It can be simplified:
$$\begin{aligned} \, &\phi(z_{12},\hbar+\omega_\gamma) \frac{\theta(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}) \theta(z_2+q_i^{\{2\}}-q_k^{\{1\}}+\hbar+\omega_{\beta+\gamma})} {\theta(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\hbar+\omega_\alpha) \theta(z_2+q_i^{\{2\}}-q_k^{\{1\}}+\omega_\beta)}-{} \\ &\hphantom{={}}-\phi(z_{12},q_{kj}^{\{1\}}+\omega_{\alpha-\beta-\gamma}) \frac{\theta(z_1+q_i^{\{2\}}-q_k^{\{1\}}+\hbar+\omega_{\beta+\gamma}) \theta(z_2+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma})} {\theta(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\hbar+\omega_\alpha) \theta(z_2+q_i^{\{2\}}-q_k^{\{1\}}+\omega_\beta)}= \\ &=\phi(z_{12},\hbar+\omega_\gamma) \frac{\phi(z_2+q_i^{\{2\}}-q_k^{\{1\}}+\omega_\beta,\hbar+\omega_\gamma)} {\phi(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma},\hbar+\omega_\gamma)}-{} \\ &\hphantom{={}}-\phi(z_{12}, q_{kj}^{\{1\}}+\omega_{\alpha-\beta-\gamma}) \frac{\phi(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\hbar+\omega_\alpha, q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha})} {\phi(z_2+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}, q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha})}= \\ &=\frac{\phi(z_{12},\hbar+\omega_\gamma) \phi(z_2+q_i^{\{2\}}-q_k^{\{1\}}+\omega_\beta,\hbar+\omega_\gamma) } {\phi(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma},\hbar+\omega_\gamma) }\times{} \\ &\hphantom{={}}\qquad\qquad\times\frac{\phi(z_2+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}, q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha})} {\phi(z_2+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}, q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha})}-{} \\ &\hphantom{={}}-\frac{\phi(z_{12},q_{kj}^{\{1\}}+\omega_{\alpha-\beta-\gamma}) \phi(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\hbar+\omega_\alpha, q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha}) } {\phi(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma},\hbar+\omega_\gamma) }\times{}\\ &\hphantom{={}}\qquad\qquad\times\frac{\phi(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma},\hbar+\omega_\gamma)} {\phi(z_2+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}, q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha})}. \end{aligned}$$
Applying the Fay identity to \(\phi\) and using the property \(\phi(x,-x)=0\), we obtain
$$\begin{aligned} \, &\phi(z_2+q_i^{\{2\}}-q_k^{\{1\}}+\omega_\beta,\hbar+\omega_\gamma) \phi(z_2+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}, q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha})= \\ &\qquad=\phi(q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha},\hbar+\omega_\gamma) \phi(z_2+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}, q_{jk}^{\{1\}}+\hbar+\omega_{\beta+2 \gamma-\alpha}), \\ &\phi(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\hbar+\omega_\alpha, q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha}) \phi(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma},\hbar+\omega_\gamma)= \\ &\qquad=\phi(\hbar+\omega_\gamma,q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha}) \phi(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}, q_{jk}^{\{1\}}+\hbar+\omega_{\beta+2 \gamma-\alpha}). \end{aligned}$$
We can pull the factor \(\phi(\hbar+\omega_\gamma,q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha})\) out of the numerator; by Fay’s identity, the remaining part is then exactly equal to the denominator:
$$\begin{aligned} \, &\phi(z_{12}, \hbar+\omega_\gamma) \phi(z_2+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}, q_{jk}^{\{1\}}+\hbar+\omega_{\beta+2 \gamma-\alpha})-{} \\ &\qquad\qquad{}-\phi(z_{12},q_{kj}^{\{1\}}+\omega_{\alpha-\beta-\gamma}) \phi(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}, q_{jk}^{\{1\}}+\hbar+\omega_{\beta+2 \gamma-\alpha})= \\ &\qquad=\phi(z_1+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}, \hbar+\omega_\gamma) \phi(z_2+q_i^{\{2\}}-q_j^{\{1\}}+\omega_{\alpha-\gamma}, q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha}). \end{aligned}$$
Using this simplification, we obtain the required relation without spectral parameters:
$$\sum_\gamma\varkappa_{\gamma\alpha}\varkappa_{\beta\gamma} \phi(\hbar+\omega_\gamma,q_{jk}^{\{1\}}+\omega_{\beta+\gamma-\alpha}) t_{ji}^{\alpha-\gamma}t_{ki}^{\beta+\gamma} =\phi(\hbar,-q_{jk}^{\{1\}})t_{ki}^\beta t_{ji}^\alpha.$$
All other relations can be verified similarly by considering the other components of the \(RLL\)-relation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sechin, I.A., Zotov, A.V. Quadratic algebras based on \(SL(NM)\) elliptic quantum \(R\)-matrices. Theor Math Phys 208, 1156–1164 (2021). https://doi.org/10.1134/S0040577921080110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921080110

Keywords

Navigation