Skip to main content
Log in

Elliptic R-matrices and Feigin and Odesskii’s elliptic algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The algebras \(Q_{n,k}(E,\tau )\) introduced by Feigin and Odesskii as generalizations of the 4-dimensional Sklyanin algebras form a family of quadratic algebras parametrized by coprime integers \(n>k\ge 1\), a complex elliptic curve E, and a point \(\tau \in E\). The main result in this paper is that \(Q_{n,k}(E,\tau )\) has the same Hilbert series as the polynomial ring on n variables when \(\tau \) is not a torsion point. We also show that \(Q_{n,k}(E,\tau )\) is a Koszul algebra, hence of global dimension n when \(\tau \) is not a torsion point, and, for all but countably many \(\tau \), \(Q_{n,k}(E,\tau )\) is Artin–Schelter regular. The proofs use the fact that the space of quadratic relations defining \(Q_{n,k}(E,\tau )\) is the image of an operator \(R_{\tau }(\tau )\) that belongs to a family of operators \(R_{\tau }(z):{\mathbb {C}}^n\otimes {\mathbb {C}}^n\rightarrow {\mathbb {C}}^n\otimes {\mathbb {C}}^n\), \(z\in {\mathbb {C}}\), that (we will show) satisfy the quantum Yang–Baxter equation with spectral parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By “classical” we mean the representation theory of the enveloping algebra \(U({{\mathfrak {g}}})\) and its quantization \(U_q({{\mathfrak {g}}})\), where \({{\mathfrak {g}}}\) is a finite dimensional Lie algebra over \({{\mathbb {C}}}\).

  2. An irreducible algebraic variety X over an algebraically closed field \(\Bbbk \) is rational if \(\Bbbk (X)\), its field of rational functions, is a purely transcendental extension \(\Bbbk (x_1,\ldots , x_n)\) of \(\Bbbk \); in more geometric terms, there is a non-empty open set \(U \subseteq X\) and an open set \(V \subseteq {{\mathbb {A}}}^n_{x_1,\ldots ,x_n}\) such that \(U \cong V\).

  3. This is related to the fact that Belavin’s elliptic solutions to the quantum Yang–Baxter equation with spectral parameter degenerate to trigonometric and rational solutions.

  4. Odesskii and Feigin [38] examine finite dimensional representations of \(Q_{n,k}(E,\tau )\) when \(\tau \) has finite order.

  5. The Poisson structure \(q_{n,k}\) is analogous to the Poisson structure \(\{x,y\}:=[x,y]\) on the symmetric algebra \(S({{\mathfrak {g}}})\).

  6. [40, Thm. A] shows that certain Poisson central elements for \(q_{n,1}\) are related to a higher secant variety.

  7. The symplectic leaves for the Poisson structure on the affine variety \({{\mathbb {C}}}^n={\text {Spec}}(Q_{n,k}(E,0))\) have been studied by Feigin and Odesskii in [25, 26] and [35, 36], for example.

  8. Surprisingly, the results in our earlier papers about \(Q_{n,k}(E,\tau )\) do not use this fact in an explicit way.

  9. In this paper we need an improved version of [17, Lem. 3.13]: Lemma 5.1 below shows that for each \(m \in {{\mathbb {Z}}}\) and each \(\zeta \in \frac{1}{n}\Lambda \) there is a holomorphic function \({{\mathbb {C}}}\rightarrow {\text {End}}_{{\mathbb {C}}}(V^{\otimes 2})\), \(\tau \mapsto R_{n,k,\tau }(m\tau +\zeta )\).

  10. In [37, Rmk. 4, §1], Feigin and Odesskii say there is a close connection between the \(Q_{n,k}(E,\tau )\)’s and Belavin’s elliptic solutions to the QYBE. They do not specify the connection but refer the reader to [15]; although [15, §4] concerns an algebra \({{\mathcal {R}}}^d_\eta \) that is defined in terms of \(S_k(z)\), [15] does not refer to R(z). The algebras \({{\mathcal {R}}}^d_\eta \) in [15, §4] are generated by \(n^2d\) elements whereas \(Q_{n,k}(E,\tau )\) is generated by n elements. At the end of the introduction to [37] is an equality \(A^{(d)}=Q_{n^2d,nd-1}(E,\tau )\). The algebra \(A^{(d)}\) is not defined (perhaps it is \({{\mathcal {R}}}^d_\eta \)) and there is no explanation of the equality.

  11. This implies that the dimension of \({\text {rel}}_{n,k}(E,\tau )\) is \(\genfrac(){0.0pt}1{n}{2}\), which is the first step toward proving Theorem 1.1(1).

  12. It follows from Corollary 5.9 that \(R(z)R(-z)=0=R(-z)R(z)\) if and only if \(z \in \, \pm \, \tau + \frac{1}{n}\Lambda \), and that R(z) is an isomorphism if \(z \notin \, \pm \, \tau + \frac{1}{n}\Lambda \).

  13. This implies that S and T extend to automorphisms of \(Q_{n,k}(E,\tau )\) (cf., [17, Prop. 3.23]).

  14. The \(\sum \) symbol in [46, (3.11)] should be \(\prod \), and the symbol \(\gamma _0\) in that equation denotes a non-zero scalar.

  15. The operator \(S_k(z)\) is defined in the same way as S(z) after replacing the generator h by the new generator \(h^{-k'}\).

  16. When \(k=n-1\), \(S_{k}(z)\) equals the operator S(z) in Eq. (3.1) of Richey and Tracy’s paper [46]. Some of the calculations in this proof are similar to those that produce Eqs. (3.3)–(3.12) in [46].

  17. Since \(F(z+\frac{1}{n})=e(-\frac{kr}{n})F(z)\) we may apply Lemma 2.5 to F(z) with \(\eta _1=\frac{1}{n}\), \(\eta _2=\eta \), \(a=0\), \(b=\tfrac{kr}{n}\), \(c=n^2\), and \(d= n(-\tau -\tfrac{1}{2}(1+\eta )+\tfrac{n}{2}\eta )\). Thus, \(c \eta _1 - a\eta _2 =n \) and

    $$\begin{aligned} \tfrac{1}{2}(c \eta _1^2 - a\eta _2^2 ) + (c-a)\eta _1\eta _2 + b\eta _2 - d\eta _1&\,=\, \tfrac{1}{2} +n\eta + \tfrac{kr}{n}\eta +\tau +\tfrac{1}{2}(1+\eta )-\tfrac{n}{2}\eta \\&\,=\, \tau +\tfrac{kr}{n}\eta + \tfrac{1}{2}(n+1)\eta \quad \text {modulo }\tfrac{1}{n}{{\mathbb {Z}}}+{{\mathbb {Z}}}\eta . \end{aligned}$$
  18. We adopt the following convention: a (complex) algebraic variety is a scheme over \({{\mathbb {C}}}\) that is reduced, irreducible, separated, and of finite type. An analytic variety is a (Hausdorff) analytic space that is reduced and irreducible.

  19. Alternatively, the second inequality in (5.7) follows from the first because

    $$\begin{aligned} {\text {nullity}}R_{\tau }(-\tau -\zeta )\,=\,\dim V^{\otimes 2}-{\text {rank}}R_{\tau }(-\tau -\zeta ) \, \ge \, n^{2}-\genfrac(){0.0pt}1{n+1}{2}\,=\,\genfrac(){0.0pt}1{n}{2}. \end{aligned}$$
  20. There are some other ways to extend the definition of \({\text {rel}}_{n,k}(E,\tau )\) to all \(\tau \in {{\mathbb {C}}}\); see [17, §3.3] for more discussion.

  21. What we are calling \(R^\textrm{Od}(z)\) is obtained from Odesskii’s formula for \(R_{n,k}({{\mathcal {E}}},\eta )(u-v)\) by identifying \(x_\alpha (u)\) and \(x_\alpha (v)\) with \(x_\alpha \) and setting \(v=0\) and \(u=z\).

  22. Artin–Schelter’s proof is “by computer”. De Laet’s is “by algebra”.

  23. These facts are analogues of the fact that when E is embedded in \({{\mathbb {P}}}^2\) or \({{\mathbb {P}}}^3\) as an elliptic normal curve of degree 3, or 4, respectively, it is a complete intersection. However, when E is embedded in \({{\mathbb {P}}}^{n-1}\) as an elliptic normal curve of degree \(n \ge 5\) it is not a complete intersection.

References

  1. Artin, M., Schelter, W.F.: Graded algebras of global dimension 3. Adv. Math. 66(2), 171–216 (1987). (MR 917738 (88k:16003))

    Article  MathSciNet  MATH  Google Scholar 

  2. Artin, M., Tate, J., Van den Bergh, M.: Some algebras associated to automorphisms of elliptic curves. In: The Grothendieck Festschrift, Vol. I, Progress in Mathematics, vol. 86, pp. 33–85. Birkhäuser, Boston (1990)

  3. Artin, M., Tate, J., Van den Bergh, M.: Modules over regular algebras of dimension 3. Invent. Math. 106(2), 335–388 (1991). (MR 1128218 (93e:16055))

    Article  MathSciNet  MATH  Google Scholar 

  4. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972). (MR 0290733)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baxter, R.J.: The inversion relation method for some two-dimensional exactly solved models in lattice statistics. J. Stat. Phys. 28(1), 1–41 (1982). (MR 664123)

    Article  MathSciNet  Google Scholar 

  6. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, Inc. [Harcourt Brace Jovanovich Publishers], London (1989) Reprint of the 1982 original

  7. Björk, J.-E., Ekström, E.K.: Filtered Auslander–Gorenstein rings. In: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progress in Mathematics, vol. 92, pp. 425–448. Birkhäuser, Boston (1990)

  8. Belavin, A.A.: Discrete groups and integrability of quantum systems. Funktsional. Anal. I Prilozhen. 14(4), 18–26, 95 (1980). (MR 595725)

    MathSciNet  MATH  Google Scholar 

  9. Björk, J.-E.: Rings of differential operators. In: North-Holland Mathematical Library, vol. 21. North-Holland Publishing Co., Amsterdam (1979)

  10. Björk, J.-E.: The Auslander condition on Noetherian rings, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), Lecture Notes in Mathematics, vol. 1404, pp. 137–173. Springer, Berlin (1989)

  11. Chudnovsky, D.V., Chudnovsky, G.V.: Completely \(X\)-symmetric \(S\)-matrices corresponding to theta functions. Phys. Lett. A 81(2–3), 105–110 (1981). (MR 597095)

    Article  MathSciNet  Google Scholar 

  12. Chevalley, C.: On algebraic group varieties. J. Math. Soc. Jpn. 6, 303–324 (1954). (MR 67122)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cherednik, I.V.: On the properties of factorized \(S\) matrices in elliptic functions. Yadernaya Fiz. 36(2), 549–557 (1982)

    MathSciNet  Google Scholar 

  14. Cherednik, I.V.: Irreducible representations of elliptic quantum \(R\)-algebras. Dokl. Akad. Nauk SSSR 291(1), 49–53 (1986). (MR 867136)

    MathSciNet  Google Scholar 

  15. Cherednik, I.V.: On \(R\)-matrix quantization of formal loop groups. In: Group Theoretical Methods in Physics, Vol. II (Yurmala, 1985), pp. 161–180. VNU Science Press, Utrecht (1986)

  16. Chirvasitu, A., Kanda, R., Smith, S.P.: The characteristic variety for Feigin and Odesskii’s elliptic algebras. To appear in Math. Res. Lett. arXiv:1903.11798v4

  17. Chirvasitu, A., Kanda, R., Smith, S.P.: Feigin and Odesskii’s elliptic algebras. J. Algebra 581, 173–225 (2021). (MR 4249759)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chirvasitu, A., Kanda, R., Smith, S.P.: Maps from Feigin and Odesskii’s elliptic algebras to twisted homogeneous coordinate rings. In: Forum of Mathematics Sigma, vol. 9, Paper No. e4 (2021)

  19. Chirvasitu, A., Kanda, R., Smith, S.P.: The symplectic leaves for the elliptic Poisson bracket on projective space defined by Feigin–Odesskii and Polishchuk. arXiv:2210.13042v1

  20. Chirvasitu, A., Smith, S.P., Wong, L.Z.: Noncommutative geometry of homogenized quantum \(\mathfrak{sl} (2,\mathbb{C} )\). Pac. J. Math. 292(2), 305–354 (2018). (MR 3733976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, T.-H., Vilonen, K., Xue, T.: Springer correspondence, hyperelliptic curves, and cohomology of Fano varieties. Math. Res. Lett. 27(5), 1281–1323 (2020). (MR 4216588)

    Article  MathSciNet  MATH  Google Scholar 

  22. De Laet, K.: On the center of 3-dimensional and 4-dimensional Sklyanin algebras. arXiv:1612.06158v1

  23. Eisenbud, D., Harris, J.: 3264 and all that—a second course in algebraic geometry. Cambridge University Press, Cambridge (2016). (MR 3617981)

    Book  MATH  Google Scholar 

  24. Eilenberg, S.: Homological dimension and syzygies. Ann. Math. (2) 64, 328–336 (1956). (MR 82489)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feigin, B.L., Odesskii, A.V.: Sklyanin algebras associated with an elliptic curve. Preprint deposited with Institute of Theoretical Physics of the Academy of Sciences of the Ukrainian SSR (1989)

  26. Feigin, B.L., Odesskii, A.V.: Vector bundles on an elliptic curve and Sklyanin algebras. In: Topics in Quantum Groups and Finite-Type Invariants. American Mathematical Society Translations: Series 2, vol. 185, pp. 65–84. American Mathematical Society, Providence, RI (1998)

  27. Hua, Z., Polishchuk, A.: Shifted Poisson structures and moduli spaces of complexes. Adv. Math. 338, 991–1037 (2018). (MR 3861721)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hua, Z., Polishchuk, A.: Shifted Poisson geometry and meromorphic matrix algebras over an elliptic curve. Selecta Math. (N.S.) 25(3), 1–45 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hua, Z., Polishchuk, A.: Elliptic bihamiltonian structures from relative shifted Poisson structures. arXiv:2007.12351v1

  30. Kirillov, A.A.: Merits and demerits of the orbit method. Bull. Am. Math. Soc. (N.S.) 36(4), 433–488 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Le Bruyn, L., Van den Bergh, M.: On quantum spaces of Lie algebras. Proc. Am. Math. Soc. 119(2), 407–414 (1993). (MR 1149975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Levasseur, T.: Grade des modules sur certains anneaux filtrés. Commun. Algebra 9(15), 1519–1532 (1981). (MR 630321)

    Article  MATH  Google Scholar 

  33. Lu, D.-M., Palmieri, J.H., Wu, Q.-S., Zhang, J.J.: Regular algebras of dimension 4 and their \(A_\infty \)-Ext-algebras. Duke Math. J. 137(3), 537–584 (2007). (MR 2309153)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mumford, D.: Tata lectures on theta. I. In: Modern Birkhäuser Classics. Birkhäuser Boston, Inc, Boston (2007) With the collaboration of Musili,, Nori, M., Previato, E., Stillman, M. Reprint of the 1983 edition

  35. Odesski, A.V.: Rational degeneration of elliptic quadratic algebras. In: Infinite Analysis, Part A, B (Kyoto, 1991), Advances Series in Mathematical Physics, vol. 16, pp. 773–779. World Scientific Publishing, River Edge, NJ (1992)

  36. Odesskii, A.V.: Elliptic algebras. Uspekhi Mat. Nauk 57(6(348)), 87–122 (2002). (MR 1991863)

    MathSciNet  Google Scholar 

  37. Odesskii, A.V., Feigin, B.L.: Sklyanin elliptic algebras. Funktsional. Anal. i Prilozhen. 23(3), 45–54 (1989)

    MathSciNet  MATH  Google Scholar 

  38. Odesskii, A.V., Feigin, B.L.: Elliptic sklyanin algebras. The case of points of finite order. Funktsional. Anal. i Prilozhen. 29(2), 9–21 (1995)

    Article  MathSciNet  Google Scholar 

  39. Polishchuk, A.: Poisson structures and birational morphisms associated with bundles on elliptic curves. Int. Math. Res. Notices 13, 683–703 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Polishchuk, A.: Feigin-Odesskii brackets, syzygies, and Cremona transformations. J. Geom. Phys. 178, 104584 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Polishchuk, A., Positselski, L.: Quadratic algebras. In: University Lecture Series, vol. 37. American Mathematical Society, Providence, RI (2005)

  42. Pym, B., Schedler, T.: Holonomic Poisson manifolds and deformations of elliptic algebras. In: Geometry and Physics. Vol. II, pp. 681–703. Oxford University Press, Oxford (2018)

  43. Pym, B.: Elliptic singularities on log symplectic manifolds and Feigin-Odesskii Poisson brackets. Compos. Math. 153(4), 717–744 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pym, B.: Constructions and classifications of projective Poisson varieties. Lett. Math. Phys. 108(3), 573–632 (2018). (MR 3765972)

    Article  MathSciNet  MATH  Google Scholar 

  45. Reyes, M.L., Rogalski, D.: Graded twisted Calabi-Yau algebras are generalized Artin-Schelter regular. Nagoya Math. J. 245, 100–153 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  46. Richey, M.P., Tracy, C.A.: \(Z_n\) Baxter model: symmetries and the Belavin parametrization. J. Stat. Phys. 42(3–4), 311–348 (1986). (MR 833020)

    Article  Google Scholar 

  47. Saltman, D.J.: Lectures on division algebras. In: CBMS Regional Conference Series in Mathematics, vol. 94, Published by American Mathematical Society, Providence, RI; on behalf of Conference Board of the Mathematical Sciences, Washington, DC (1999)

  48. Sklyanin, E.K.: Some algebraic structures connected with the Yang–Baxter equation. Funktsional. Anal. i Prilozhen. 16(4), 27–34, 96 (1982). (MR 684124 (84c:82004))

    MathSciNet  Google Scholar 

  49. Smith, S.P.: The four-dimensional Sklyanin algebras. Proceedings of Conference on Algebraic Geometry and Ring Theory in Honor of Michael Artin, Part I, no. 1, 1994, pp. 65–80. Antwerp (1992)

  50. Smith, S.P.: Some finite-dimensional algebras related to elliptic curves. In: Representation Theory of Algebras and Related Topics (Mexico City, 1994), CMS Conference Proceedings, vol. 19, pp. 315–348. American Mathematics Society, Providence, RI (1996)

  51. Smith, S.P., Stafford, J.T.: Regularity of the four-dimensional Sklyanin algebra. Compositio Math. 83(3), 259–289 (1992). (MR 1175941 (93h:16037))

    MathSciNet  MATH  Google Scholar 

  52. Smith, S.P., Staniszkis, J.M.: Irreducible representations of the 4-dimensional Sklyanin algebra at points of infinite order. J. Algebra 160(1), 57–86 (1993). (MR 1237078 (95c:16027))

    Article  MathSciNet  MATH  Google Scholar 

  53. Staniszkis, J.M.: Linear modules over Sklyanin algebras. J. Lond. Math. Soc. (2) 53(3), 464–478 (1996). (MR 1396711)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tracy, C.A.: Embedded elliptic curves and the Yang–Baxter equations. Physica D 16(2), 203–220 (1985). (MR 796270)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tate, J.T., Van den Bergh, M.: Homological properties of Sklyanin algebras. Invent. Math. 124(1–3), 619–647 (1996). (MR 1369430 (98c:16057))

    Article  MathSciNet  MATH  Google Scholar 

  56. Van den Bergh, M.: A translation principle for the four-dimensional Sklyanin algebras. J. Algebra 184(2), 435–490 (1996). (MR 1409223)

    Article  MathSciNet  MATH  Google Scholar 

  57. Walton, C., Wang, X., Yakimov, M.: Poisson geometry and representations of PI 4-dimensional Sklyanin algebras. Selecta Math. (N.S.) 27(5), Art. 99. (2021)

  58. Walton, C., Wang, X., Yakimov, M.: Poisson geometry of PI three-dimensional Sklyanin algebras. Proc. Lond. Math. Soc. (3) 118(6), 1471–1500 (2019). (MR 3957827)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhang, J.J.: Twisted graded algebras and equivalences of graded categories. Proc. Lond. Math. Soc. (3) 72(2), 281–311 (1996). (MR 1367080 (96k:16078))

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A.C. acknowledges support through NSF grants DMS-1801011 and DMS-2001128.

R.K. was a JSPS Overseas Research Fellow, and supported by JSPS KAKENHI Grant Numbers JP16H06337, JP17K14164, JP20K14288, and JP21H04994, Leading Initiative for Excellent Young Researchers, MEXT, Japan, and Osaka Central Advanced Mathematical Institute: MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849. R.K. would like to express his deep gratitude to Paul Smith for his hospitality as a host researcher during R.K.’s visit to the University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Kanda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirvasitu, A., Kanda, R. & Smith, S.P. Elliptic R-matrices and Feigin and Odesskii’s elliptic algebras. Sel. Math. New Ser. 29, 31 (2023). https://doi.org/10.1007/s00029-023-00827-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00827-0

Keywords

Mathematics Subject Classification

Navigation