Skip to main content
Log in

Investigating the sensor response of ceria-containing binary metal oxide nanocomposites

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The hydrogen sensing performance of ceria-containing nanocrystalline indium and tin oxides is investigated for different concentrations of added ceria. The sensor response of nanocrytsalline In2O3 is considerably enhanced at low CeO2 concentrations. In contrast, low levels of CeO2 cause a substantial drop in the sensor response of SnO2-based composite; at a 3 wt % level of added ceria, its hydrogen sensing ability is almost entirely suppressed. Possible causes of these effects are investigated via X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. XPS data show that additions of CeO2 have different effects on the structure of the base oxides (In2O3 and SnO2), with implications for the hydrogen sensing performance of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).

    Article  CAS  Google Scholar 

  2. N. Yamazoe and K. Shimanoe, Sens. Actuators B 128, 566 (2008).

    Article  CAS  Google Scholar 

  3. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., in Chemical Sensors: Simulation and Modeling, Ed. by G. Korotcenkov (Momentum Press, New York, 2012), pp. 261–296.

    Google Scholar 

  4. W. J. Moon, J. H. Yu, and C. G. Man, Sens. Actuators B 87, 464 (2002).

    Article  CAS  Google Scholar 

  5. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 169, 32 (2012).

    Article  CAS  Google Scholar 

  6. K.-W. Kim, P.-S. Cho, S.-J. Kim, et al., Sens. Actuators B 123, 318 (2007).

    Article  CAS  Google Scholar 

  7. A. Trovarelli, Catal. Rev.: Sci. Eng. 38, 439 (1996).

    Article  CAS  Google Scholar 

  8. G. Pacchioni, Chem. Phys. Chem. 4, 1041 (2003).

    Article  CAS  Google Scholar 

  9. Z. Jiang, Z. Guo, B. Sun, et al., Sens. Actuators B 145, 667 (2010).

    Article  CAS  Google Scholar 

  10. M. E. M. Hassouna, A. M. El-Sayed, F. M. Ismail, et al., Int. J. Nanomater. Biostruct. 2, 44 (2012).

    Google Scholar 

  11. A. Khodadadi, S. S. Mohajerzadeh, Y. Mourtazavi, and A. M. Miri, Sens. Actuators B 80, 267 (2001).

    Article  CAS  Google Scholar 

  12. C. Li, Z. Yu, S. Fang, et al., J. Phys.: Conf. Ser. 152, 012033 (2009).

    Google Scholar 

  13. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 209, 562 (2015).

    Article  CAS  Google Scholar 

  14. G. N. Gerasimov, V. F. Gromov, L. I. Trakhtenberg, T. V. Belysheva, E. Yu. Spiridonova, and V. M. Rozenbaum, Russ. J. Phys. Chem. A 88, 503 (2014).

    Article  CAS  Google Scholar 

  15. M. M. Natil and A. Glisenti, J. Phys. Chem. B 110, 2515 (2006).

    Article  Google Scholar 

  16. X. Lu, X. Huang, S. Xie, et al., Langmuir 26, 7569 (2010).

    Article  CAS  Google Scholar 

  17. F. Esch, S. Fabris, L. Zhou, et al., Science (Washington, D.C.) 309, 752 (2005).

    Article  CAS  Google Scholar 

  18. X. Wan, D. Goberman, L. L. Shaw, et al., Appl. Phys. Lett. 96, 123108 (2010).

    Article  Google Scholar 

  19. A. C. Johnston-Peck, S. D. Senanayake, J. J. Plata, et al., J. Phys. Chem. C 117, 14463 (2013).

    Article  CAS  Google Scholar 

  20. A. Gupta, A. Kumar, M. S. Hegde, and U. V. Waghmare, J. Chem. Phys. 132, 194702 (2010).

    Article  Google Scholar 

  21. A. Badri, C. Binet, and J. C. Lavalley, J. Chem. Soc., Faraday Trans. 92, 4669 (1996).

    Article  CAS  Google Scholar 

  22. S. Bernal, J. J. Calvino, G. A. Cifredo, and J. M. Rodriguez-Izquierdo, J. Phys. Chem. 99, 11794 (1995).

    Article  CAS  Google Scholar 

  23. Z. Xianrong, Z. Rongbin, X. Xianglan, and W. Xiang, J. Rare Earths 30, 1013 (2012).

    Article  Google Scholar 

  24. W. Qin, L. Xu, J. Song, et al., Sens. Actuators B 185, 231 (2013).

    Article  CAS  Google Scholar 

  25. X. Xu, R. Zhang, X. Zeng, et al., Chem. Cat. Chem. 5, 2025 (2013).

    CAS  Google Scholar 

  26. Y. Liu, P. Yang, J. Li, et al., RSC Adv. 5, 98500 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Gerasimov.

Additional information

Original Russian Text © G.N. Gerasimov, V.F. Gromov, T.V. Belysheva, M.I. Ikim, E.Yu. Spiridonova, M.M. Grekhov, I.V. Shapochkina, V.I. Brynzar’, L.I. Trakhtenberg, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 10, pp. 1765–1770.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, G.N., Gromov, V.F., Belysheva, T.V. et al. Investigating the sensor response of ceria-containing binary metal oxide nanocomposites. Russ. J. Phys. Chem. 91, 1976–1980 (2017). https://doi.org/10.1134/S0036024417100120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417100120

Keywords

Navigation