Molecular Biology

, Volume 53, Issue 3, pp 402–410 | Cite as

Modification of Cytotoxic Lymphocytes with T Cell Receptor Specific for Minor Histocompatibility Antigen ACC-1Y

  • A. M. PilunovEmail author
  • A. A. Kuchmiy
  • S. A. Sheetikov
  • S. Y. Filkin
  • D. S. Romaniuk
  • F. N. Rosov
  • G. A. Efimov


Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative therapy for hematopoietic malignancies. The graft-derived donor lymphocytes are capable of eliminating the residual recipient malignant cells in the course of allogeneic immune response, thus decreasing the chances of a relapse of the disease. Foreign peptides of the recipient presented by the MHC molecules are able to elicit the immune response immunologically. These polymorphic peptides are known as minor histocompatibility antigens (MiHAs). MiHAs occur due to the nonsynonymous single nucleotide polymorphisms in human genome. Transfusion of T cells specific to MiHAs presented predominantly in the cells of hematopoietic origin will allow the targeted elimination of residual malignant clones avoiding undesirable damage to healthy tissues. To induce the immune response, the donor must be homozygous by the MiHA allele and the recipient must either be homozygous or heterozygous by the alternative MiHA allele. The therapeutic mismatch occurs in 25% of cases under the optimal frequency of allelic variants. Minor antigen ACC-1Y originates from polymorphism in the BCL-2A1 gene; its immunogenic mismatch occurrence approaches the theoretical maximum. In addition, BCL2A1 is overexpressed in cells of various lymphomas. ACC-1Y is presented on allele HLA-A*24:02, which is relatively frequent in the Russian population. Combination of these factors makes the minor antigen ACC-1Y a promising target for immunotherapy. Transfusion of donor CD8+ lymphocytes modified with transgenic MiHA-specific TCR is one of the promising methods of posttransplant leukemia therapy and relapse prophylaxis. We obtained a sequence of high-affinity ACC-1Y-specific TCR after the antigen-specific expansion of T cells derived from a healthy ACC-1Y–/– donor. We cloned this sequence into the lentiviral vector and obtained the assembled viral particles. Further, we transduced the CD8+ lymphocyte culture and demonstrated its antigen-specific cytotoxic activity. It is suggested that CD8+ lymphocytes modified by the described method could be potentially transferred to recipients as a therapy against relapse after allo-HSCT.


leukemias minor histocompatibility antigens adoptive transfer lymphocyte modification 



  1. 1.
    Barrett A.J., Battiwalla M. 2010. Relapse after allogeneic stem cell transplantation. Expert. Rev. Hematol. 3 (4), 429‒441.CrossRefGoogle Scholar
  2. 2.
    Goulmy E.L.S., Schipper R., Pool J., Blokland E., Falkenburg F., Vossen J., Gratwohl A., Vogelsang G.B., van Houwelingen H.C., Van Rood J.J. 1996. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N. Engl. J. Med334 (5), 281–285.CrossRefGoogle Scholar
  3. 3.
    Wallny H.J., Rammensee H.G. 1990. Identification of classical minor histocompatibility antigen as cell-derived peptide. Nature343 (6255), 275.CrossRefGoogle Scholar
  4. 4.
    Efimov G.A., Vdovin A.S., Grigor’ev A.A., Fil’kin S.Yu., Bykova N.A., Savchenko V.G. 2015. Immunobiology of acute graft-versus-host reaction. Med. Immunol. 17 (6), 499‒516.CrossRefGoogle Scholar
  5. 5.
    Heemskerk M.H., Hoogeboom M., Hagedoorn R., Kester M.G., Willemze R., Falkenburg J.F. 2004. Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J. Exp. Med199 (7), 885–894.CrossRefGoogle Scholar
  6. 6.
    Granados D.P., Rodenbrock A., Laverdure J.P., Côté C., Caron-Lizotte O., Carli C., Pearson H., Janelle V., Durette C., Bonneil E., Roy D.C., Delisle J-S., Lemieux S., Thibault P. 2016. Proteogenomic-based discovery of minor histocompatibility antigens with suitable features for immunotherapy of hematologic cancers. Leukemia30 (6), 1344.CrossRefGoogle Scholar
  7. 7.
    Bykova N.A., Malko D.B., Efimov, G.A. 2018. In silico analysis of minor histocompatibility antigen landscape based on 1000 Genomes project. Front. Immunol9, 1819.CrossRefGoogle Scholar
  8. 8.
    Nishida T., Akatsuka Y., Morishima Y., Hamajima N., Tsujimura K., Kuzushima K., Kodera Y., Takahashi T. 2004. Clinical relevance of a newly identified HLA-A*24:02-restricted minor histocompatibility antigen epitope derived from BCL2A1, ACC-1, in patients receiving HLA genotypically matched unrelated bone marrow transplant. Br. J. Haematol. 124 (5), 629–635.CrossRefGoogle Scholar
  9. 9.
    Warren E.H., Fujii N., Akatsuka Y., Chaney C.N., Mito J.K., Loeb K.R., Gooley T.A., Brown M.L., Koo K.K.W., Rosinski K.V., Ogawa S., Matsubara A., Appelbaum F.R., Riddell S.R. 2010. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplant with T cells specific for minor histocompatibility antigens. Blood. 115 (19), 3869–3878.CrossRefGoogle Scholar
  10. 10.
    Vdovin A.S., Bykova N.A., Efimov G.A. 2017. T Lymphocytes with modified specificity in the therapy of malignant diseases. Mol. Biol. (Moscow). 51 (6), 874–886.CrossRefGoogle Scholar
  11. 11.
    Dossa R.G., Cunningham T., Sommermeyer D., Medina-Rodriguez I., Biernacki M.A., Foster K., Bleakley M. 2018. Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse. Blood131 (1), 108–120.Google Scholar
  12. 12.
    White M., Whittaker R., Gandara C., Stoll E.A. 2017. A guide to approaching regulatory considerations for lentiviral-mediated gene therapies. Hum. Gene Ther. Methods. 28 (4), 163–176.CrossRefGoogle Scholar
  13. 13.
    Romaniuk D., Postovskaya A., Khmelevskaya A., Malko D., Efimov G.A. 2018. Rapid multiplex genotyping of 20 HLA-A*02:01 restricted minor histocompatibility antigens. Front. Immunol. (in press).Google Scholar
  14. 14.
    Wölfl M., Greenberg P.D. 2014. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nat. Protoc. 9 (4), 950.CrossRefGoogle Scholar
  15. 15.
    Vdovin A.S., Filkin S.Yu., Efimova P.R., Shitikov S.A., Kapranov N.M., Davydova Yu.O., Egorov E.S., Khamaganova E.G., Drokov M.Yu., Kuzmina L.A., Parovichnikova E.N., Efimov G.A., Savchenko V.G. 2016. Recombinant MHC tetramers for isolation of virus-specific CD8+ cells from healthy donors: Potential approach for cell therapy of posttransplant cytomegalovirus infection. Biochemistry (Moscow). 81 (11), 1371–1383.Google Scholar
  16. 16.
    Toebes M., Rodenko B., Ovaa H., Schumacher T.N. 2009). Generation of peptide MHC class I monomers and multimers through ligand exchange. Curr. Protoc. Immunol. 87 (1), 18–16.Google Scholar
  17. 17.
    Mamedov I.Z., Britanova O.V., Zvyagin I.V., Turchaninova M.A., Bolotin D.A., Putintseva E.V., Lebedev Y.B., Chudakov D.M. 2013. Preparing unbiased T-cell receptor and antibody cDNA libraries for the deep next generation sequencing profiling. Front. Immunol. 4, 456.CrossRefGoogle Scholar
  18. 18.
    Donnelly M.L., Luke G., Mehrotra A., Li X., Hughes L.E., Gani D., Ryan M.D. 2001. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: A putative ribosomal ‘skip’. J. Gen. Virol. 82 (5), 1013–1025.CrossRefGoogle Scholar
  19. 19.
    Janelle V., Carli C., Taillefer J., Orio J., Delisle J.S. 2015. Defining novel parameters for the optimal priming and expansion of minor histocompatibility antigen-specific T cells in culture. J. Transl. Med. 13 (1), 123.CrossRefGoogle Scholar
  20. 20.
    Oostvogels R., Lokhorst H.M., Mutis T. 2016. Minor histocompatibility Ags: Identification strategies, clinical results and translational perspectives. Bone Marrow Transplant. 51 (2), 163.CrossRefGoogle Scholar
  21. 21.
    van Loenen M.M., de Boer R., Amir A.L., Hagedoorn R.S., Volbeda G.L., Willemze R., van Rood J.J., Falkenburg J.H.F., Heemskerk M.H. 2010. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc. Natl. Acad. Sci. U. S. A. 107 (24), 10972–10977.CrossRefGoogle Scholar
  22. 22.
    Roth T.L., Puig-Saus C., Yu R., Shifrut E., Carnevale J., Li P.J., Hiatt J., Saco J., Krystofinski P., Li H., Tobin V., Nguyen D.N., Lee M.R., Putnam A.L., Ferris A.L., et al. 2018. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 559 (7714), 405.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. M. Pilunov
    • 1
    • 2
    Email author
  • A. A. Kuchmiy
    • 1
  • S. A. Sheetikov
    • 1
    • 2
  • S. Y. Filkin
    • 1
  • D. S. Romaniuk
    • 1
  • F. N. Rosov
    • 2
  • G. A. Efimov
    • 1
    • 2
  1. 1.National Hematology Research CenterMoscowRussia
  2. 2.Biological Faculty, Moscow State UniversityMoscowRussia

Personalised recommendations