Skip to main content
Log in

Recombinant MHC tetramers for isolation of virus-specific CD8+ cells from healthy donors: Potential approach for cell therapy of posttransplant cytomegalovirus infection

  • Molecular and Cellular Mechanisms of Inflammation (Special Issue) Guest Editors S. A. Nedospasov and D. V. Kuprash
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Patients undergoing allogeneic hematopoietic stem cell transplantation have a high risk of cytomegalovirus reactivation, which in the absence of T-cell immunity can result in the development of an acute inflammatory reaction and damage of internal organs. Transfusion of the virus-specific donor T-lymphocytes represents an alternative to a highly toxic and often ineffective antiviral therapy. Potentially promising cell therapy approach comprises transfusion of cytotoxic T-lymphocytes, specific to the viral antigens, immediately after their isolation from the donor’s blood circulation without any in vitro expansion. Specific T-cells could be separated from potentially alloreactive lymphocytes using recombinant major histocompatibility complex (MHC) multimers, carrying synthetic viral peptides. Rapid transfusion of virus-specific T-cells to patients has several crucial advantages in comparison with methods based on the in vitro expansion of the cells. About 30% of hematopoietic stem cell donors and 46% of transplant recipients at the National Research Center for Hematology were carriers of the HLA-A*02 allele. Moreover, 94% of Russian donors have an immune response against the cytomegalovirus (CMV). Using recombinant HLA-A*02 multimers carrying an immunodominant cytomegalovirus peptide (NLV), we have shown that the majority of healthy donors have pronounced T-cell immunity against this antigen, whereas shortly after the transplantation the patients do not have specific T-lymphocytes. The donor cells have the immune phenotype of memory cells and can be activated and proliferate after stimulation with the specific antigen. Donor lymphocytes can be substantially enriched to significant purity by magnetic separation with recombinant MHC multimers and are not activated upon cocultivation with the antigen-presenting cells from HLA-incompatible donors without addition of the specific antigen. This study demonstrated that strong immune response to CMV of healthy donors and prevalence of HLA-A*02 allele in the Russian population make it possible to isolate a significant number of virus-specific cells using HLA-A*02–NLV multimers. After the transfusion, these cells should protect patients from CMV without development of allogeneic immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

allo-HSCT:

allogeneic hematopoietic stem cell transplantation

APC:

allophycocyanin

CMV:

cytomegalovirus

CSFE:

carboxyfluorescein succinimidyl ester

GVHD:

“graft-versus-host” disease

HSC:

hematopoietic stem cells

IFN-γ:

interferon-gamma

MHC:

major histocompatibility complex

NLV:

immunodominant peptide of cytomegalovirus (NLVPMVATV)

PE:

phycoerythrin

SSC:

side-scattered light

TNF:

tumor necrosis factor

References

  1. Vilibic-Cavlek, T., Kolaric, B., Ljubin-Sternak, S., Kos, M., Kaic, B., and Mlinaric-Galinovic, G. (2015) Prevalence and dynamics of cytomegalovirus infection among patients undergoing chronic hemodialysis, Indian J. Nephrol., 25, 95–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zebrun, A. B., Kuliasheva, L. B., Ermolenko, K. D., and Zakrevskaia, A. V. (2013) Spread of herpesvirus infections in children and adults in St. Petersburg according to seroepidemiologic study data, Zh. Mikrobiol. Epidemiol. Immunobiol., 6, 30–36.

    Google Scholar 

  3. Compton, T., Kurt-Jones, E. A., Boehme, K. W., Belko, J., Latz, E., Golenbock, D. T., and Finberg, R. W. (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2, J. Virol., 77, 4588–4596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Humar, A., St Louis, P., Mazzulli, T., McGeer, A., Lipton, J., Messner, H., and MacDonald, K. S. (1999) Elevated serum cytokines are associated with cytomegalovirus infection and disease in bone marrow transplant recipients, J. Infect. Dis., 179, 484–488.

    Article  CAS  PubMed  Google Scholar 

  5. Barry, S. M., Johnson, M. A., and Janossy, G. (2000) Cytopathology or immunopathology? The puzzle of cytomegalovirus pneumonitis revisited, Bone Marrow Transplant., 26, 591–597.

    Article  CAS  PubMed  Google Scholar 

  6. Efimov, G. A., Vdovin, A. S., Grigor’ ev, A. A., Filkin, S. Y., Bykova, N. A., and Savchenko, V. G. (2015) Immunobiology of acute reaction “graft-versus-host”, Med. Immunol., 17, 499–516.

    Article  Google Scholar 

  7. Varani, S., and Landini, M. P. (2011) Cytomegalovirusinduced immunopathology and its clinical consequences, Herpesviridae, 2, 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ariza-Heredia, E. J., Nesher, L., and Chemaly, R. F. (2014) Cytomegalovirus diseases after hematopoietic stem cell transplantation: a mini-review, Cancer Lett., 342, 1–8.

    Article  CAS  PubMed  Google Scholar 

  9. Meijer, E., Boland, G. J., and Verdonck, L. F. (2003) Prevention of cytomegalovirus disease in recipients of allogeneic stem cell transplants, Clin. Microbiol. Rev., 16, 647657.

    Article  CAS  Google Scholar 

  10. Bykova, N. A., Malko, D. B., Vdovin, A. S., and Efimov, G. A. (2016) In silico analysis of immunogenic potential of one-nucleotide polimorphism at the fully HLA-compatible transplantation, Ros. Immunol. Zh., 10, 38–48.

    Google Scholar 

  11. Kryuchkov, N. A., and Khaitov, M. R. (2008) Detection of antigen-specific populations of T-cells using MHC-peptide tetramers, Immunologiya, 29, 187–190.

    CAS  Google Scholar 

  12. Karpenko, L. I., Mechetina, L. V., and Reguzova, A. Iu. (2011) MHC-multimers and their application in studies of antiviral immune response, Zh. Mikrobiol. Epidemiol. Immunobiol., 2, 112–119.

    Google Scholar 

  13. Riddell, S. R., Watanabe, K. S., Goodrich, J. M., Li, C. R., Agha, M. E., and Greenberg, P. D. (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T-cell clones, Science, 257, 238–241.

    Article  CAS  PubMed  Google Scholar 

  14. Rooney, C. M., Smith, C. A., Ng, C. Y., Loftin, S., Li, C., Krance, R. A., Brenner, M. K., and Heslop, H. E. (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus-related lymphoproliferation, Lancet, 345, 9–13.

    Article  CAS  PubMed  Google Scholar 

  15. Leen, A. M., Bollard, C. M., Mendizabal, A. M., Shpall, E. J., Szabolcs, P., Antin, J. H., Kapoor, N., Pai, S. Y., Rowley, S. D., Kebriaei, P., Dey, B. R., Grilley, B. J., Gee, A. P., Brenner, M. K., Rooney, C. M., and Heslop, H. E. (2013) Multicenter study of banked third-party virusspecific T-cells to treat severe viral infections after hematopoietic stem cell transplantation, Blood, 121, 51135123.

    Article  CAS  Google Scholar 

  16. Peggs, K. S., Thomson, K., Samuel, E., Dyer, G., Armoogum, J., Chakraverty, R., Pang, K., Mackinnon, S., and Lowdell, M. W. (2011) Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation, Clin. Infect. Dis., 52, 4957.

    Article  CAS  Google Scholar 

  17. Bao, L., Cowan, M. J., Dunham, K., Horn, B., McGuirk, J., Gilman, A., and Lucas, K. G. (2012) Adoptive immunotherapy with CMV-specific cytotoxic T-lymphocytes for stem cell transplant patients with refractory CMV infections, J. Immunother., 35, 293–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O’Reilly, R. J., Prockop, S., Hasan, A. N., Koehne, G., and Doubrovina, E. (2016) Virus-specific T-cell banks for “off the shelf” adoptive therapy of refractory infections, Bone Marrow Transplant., doi: 10.1038/bmt.2016.17.

  19. McGoldrick, S. M., Bleakley, M. E., Guerrero, A., Turtle, C. J., Yamamoto, T. N., Pereira, S. E., Delaney, C. S., and Riddell, S. R. (2013) Cytomegalovirus-specific T cells are primed early after cord blood transplant but fail to control virus in vivo, Blood, 121, 2796–2803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ljungman, P., Hakki, M., and Boeckh, M. (2011) Cytomegalovirus in hematopoietic stem cell transplant recipients, Hematol. Oncol. Clin. North Am., 25, 151–169.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gratama, J. W., Van Esser, J. W., Lamers, C. H., Tournay, C., Lowenberg, B., Bolhuis, R. L., and Cornelissen, J. J. (2001) Tetramer-based quantification of cytomegalovirus (CMV)-specific CD8+ T-lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection, Blood, 98, 1358–1364.

    Article  CAS  PubMed  Google Scholar 

  22. Nunes, J. M., Buhler, S., Roessli, D., Sanchez-Mazas, A., and HLA-net 2013 collaboration (2014) The HLA-net Gene[rate] pipeline for effective HLA data analysis and its application to 145 population samples from Europe and neighbouring areas, Tissue Antigens, 83, 307–323.

    Article  CAS  PubMed  Google Scholar 

  23. Hebart, H., Rauser, G., Stevanovic, S., Haenle, C., Nussbaum, A. K., Meisner, C., Bissinger, A. L., Tenzer, S., Jahn, G., Loeffler, J., Rammensee, H. G., Schild, H., and Einsele, H. (2003) A CTL epitope from human cytomegalovirus IE1 defined by combining prediction of HLA binding and proteasomal processing is the target of dominant immune responses in patients after allogeneic stem cell transplantation, Exp. Hematol., 31, 966–973.

    Article  CAS  PubMed  Google Scholar 

  24. Cobbold, M., Khan, N., Pourgheysari, B., Tauro, S., McDonald, D., Osman, H., Assenmacher, M., Billingham, L., Steward, C., Crawley, C., Olavarria, E., Goldman, J., Chakraverty, R., Mahendra, P., Craddock, C., and Moss, P. A. (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-pepti De tetramers, J. Exp. Med., 202, 379–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramirez, N., and Olavarria, E. (2013) Viral-specific adoptive immunotherapy after allo-SCT: the role of multimerbased selection strategies, Bone Marrow Transplant., 48, 1265–1270.

    Article  CAS  PubMed  Google Scholar 

  26. Casalegno-Garduno, R., Schmitt, A., Yao, J., Wang, X., Xu, X., Freund, M., and Schmitt, M. (2010) Multimer technologies for detection and adoptive transfer of antigenspecific T-cells, Cancer Immunol. Immunother., 59, 195202.

    Article  CAS  Google Scholar 

  27. Yee, C. (2003) Adoptive T-cell therapy–immune monitoring and MHC multimers, Clin. Immunol., 106, 5–9.

    Article  CAS  PubMed  Google Scholar 

  28. Stemberger, C., Graef, P., Odendahl, M., Albrecht, J., Dossinger, G., Anderl, F., Buchholz, V. R., Gasteiger, G., Schiemann, M., Grigoleit, G. U., Schuster, F. R., Borkhardt, A., Versluys, B., Tonn, T., Seifried, E., Einsele, H., Germeroth, L., Busch, D. H., and Neuenhahn, M. (2014) Lowest numbers of primary CD8+ T-cells can reconstitute protective immunity upon adoptive immunotherapy, Blood, 124, 628–637.

    Article  CAS  PubMed  Google Scholar 

  29. Garboczi, D. N., Hung, D. T., and Wiley, D. C. (1992) HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides, Proc. Natl. Acad. Sci. USA, 89, 3429–3433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rodenko, B., Toebes, M., Hadrup, S. R., Van Esch, W. J., Molenaar, A. M., Schumacher, T. N., and Ovaa, H. (2006) Generation of peptide-MHC class I complexes through UV-mediated ligand exchange, Nat. Protoc., 1, 1120–1132.

    Article  CAS  PubMed  Google Scholar 

  31. Excoffier, L., and Lischer, H. E. (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Res., 10, 564–567.

    Article  Google Scholar 

  32. Uhlin, M., Gertow, J., Uzunel, M., Okas, M., Berglund, S., Watz, E., Brune, M., Ljungman, P., Maeurer, M., and Mattsson, J. (2012) Rapid salvage treatment with virus-specific T-cells for therapy-resistant disease, Clin. Infect. Dis., 55, 1064–1073.

    Article  CAS  PubMed  Google Scholar 

  33. Uhlin, M., Okas, M., Gertow, J., Uzunel, M., Brismar, T. B., and Mattsson, J. (2010) A novel haplo-identical adoptive CTL therapy as a treatment for EBV-associated lymphoma after stem cell transplantation, Cancer Immunol. Immunother., 59, 473–477.

    Article  PubMed  Google Scholar 

  34. Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M., and Lugli, E. (2013) The who’s who of T-cell differentiation: human memory T-cell subsets, Eur. J. Immunol., 43, 2797–2809.

    Article  CAS  PubMed  Google Scholar 

  35. Amir, A. L., D’Orsogna, L. J., Roelen, D. L., Van Loenen, M. M., Hagedoorn, R. S., De Boer, R., Van der Hoorn, M. A., Kester, M. G., Doxiadis, I. I., Falkenburg, J. H., Claas, F. H., and Heemskerk, M. H. (2010) Allo-HLA reactivity of virusspecific memory T-cells is common, Blood, 115, 3146–3157.

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen, T. H., Rowntree, L. C., Pellicci, D. G., Bird, N. L., Handel, A., Kjer-Nielsen, L., Kedzierska, K., Kotsimbos, T. C., and Mifsud, N. A. (2014) Recognition of distinct cross-reactive virus-specific CD8+ T-cells reveals a unique TCR signature in a clinical setting, J. Immunol., 192, 5039–5049.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Efimov.

Additional information

Original Russian Text © A. S. Vdovin, S. Y. Filkin, P. R. Yefimova, S. A. Sheetikov, N. M. Kapranov, Y. O. Davydova, E. S. Egorov, E. G. Khamaganova, M. Y. Drokov, L. A. Kuzmina, E. N. Parovichnikova, G. A. Efimov, V. G. Savchenko, 2016, published in Biokhimiya, 2016, Vol. 81, No. 11, pp. 1628–1642.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vdovin, A.S., Filkin, S.Y., Yefimova, P.R. et al. Recombinant MHC tetramers for isolation of virus-specific CD8+ cells from healthy donors: Potential approach for cell therapy of posttransplant cytomegalovirus infection. Biochemistry Moscow 81, 1371–1383 (2016). https://doi.org/10.1134/S0006297916110146

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916110146

Keywords

Navigation