Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 4, pp 884–890 | Cite as

Deformation Behavior of Three-Dimensional Carbon Structures Under Hydrostatic Compression

  • J. A. BaimovaEmail author
  • L. Kh. Rysaeva
Article

Abstract

The paper presents the results of numerical simulation aimed at studying the deformation behavior of carbon structures containing carbon atoms with various coordination numbers and, consequently, various electronic configurations and properties. Namely, the method of molecular dynamics was used to study the deformation behavior of two different structures of crumpled graphene (sp2-material formed by graphene flakes bonded by Van der Waals forces) and carbon diamond-like phases (rigid sp3-structures) under hydrostatic compression. Stress-strain curves have been obtained, structural features have been shown to affect mechanical properties of three-dimensional carbon structures.

Keywords

crumpled graphene diamond-like structure inelastic deformation mechanical properties molecular dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Е. А. Belenkov, V. V. Ivanovskaya, and A. L. Ivanovskii. Nanodiamonds and other carbon nanomaterials. Computer Science. Yekaterinburg. UrB RAS, 2008. [in Russian]Google Scholar
  2. 2.
    R. R. Mulykov and J. А. Baimova. Carbon nanomaterials. Ufa: RIC BashSU, 2015. [in Russian]Google Scholar
  3. 3.
    J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao. Nature Mat., 2013, 12, 321.CrossRefGoogle Scholar
  4. 4.
    J. А. Baimova, R. Т. Murzaev, and S. V. Dmitriev. Phys. Solid State, 2014, 56, 1946CrossRefGoogle Scholar
  5. 5.
    J. A. Baimova, B. Liu, S. V. Dmitriev, N. Srikanth, and K. Zhou. Phys. Chem. Chem. Phys., 2014, 16, 1950.CrossRefGoogle Scholar
  6. 6.
    J. A. Baimova, B. Liu, S. V. Dmitriev, and K. Zhou. J. Phys. D. Appl. Phys., 2015, 48, 095302.CrossRefGoogle Scholar
  7. 7.
    H. Zhan, G. Zhang, J. M. Bell, and Y. Gu. Carbon, 2016, 107, 304.CrossRefGoogle Scholar
  8. 8.
    G. Chevrot, E. Bourasseau, N. Pineau, and J.–B. Maillet. Carbon, 2009, 47, 3392.CrossRefGoogle Scholar
  9. 9.
    D. S. Lisovenko, J. А. Baimova, L. Kh. Rysaeva, V. А. Gorodtsov, and S. V. Dmitriev. Phys. Solid State, 2017, 59, 820.CrossRefGoogle Scholar
  10. 10.
    D. S. Lisovenko, J. A. Baimova, L. Kh. Rysaeva, V. A. Gorodtsov, A. I. Rudskoy, and S. V. Dmitriev. PSS (b), 2016, 1–8, 1295.Google Scholar
  11. 11.
    E. A. Belenkov and V. A. Greshnyakov. Phys. Solid State, 2016, 58, 2145.CrossRefGoogle Scholar
  12. 12.
    A. San–Miguel. Chem. Soc. Rev., 2006, 35, 876.CrossRefPubMedGoogle Scholar
  13. 13.
    M. G. Fyta and P. C. Kelires. Fullerenes, Nanotubes, Carbon Nanostruct., 2005, 13, 13.CrossRefGoogle Scholar
  14. 14.
    R. Moret. Acta Crystallogr., 2005, A61, 62.Google Scholar
  15. 15.
    M. Nunez–Regueiro, L. Marques, and J.–L. Hodeau. The Physics of fullerene–based and fullerene–related materials. / W. Andreoni. Boston: Kluwer Academic Dordrecht, 2000.Google Scholar
  16. 16.
    A. Merlen, N. Bendiab, P. Toulemonde, et al. Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 72, 035409.CrossRefGoogle Scholar
  17. 17.
    S. Lebedkin, K. Arnold, O. Kiowski, F. Hennrich, and M. M. Kappes. Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 094109.CrossRefGoogle Scholar
  18. 18.
    V. N. Khabashesku, Z. Gu, B. Brinson, J. L. Zimmerman, J. L. Margrave, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina. J. Phys. Chem. B, 2002, 106, 11155.CrossRefGoogle Scholar
  19. 19.
    M. Popov, M. Kyotani, R. J. Nemanich, and Y. Koga. Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 65, 033408.CrossRefGoogle Scholar
  20. 20.
    J. E. Field. The Properties of Natural and Synthetic Diamond. London: Academic, 1997.Google Scholar
  21. 21.
    S. J. Clark, C. J. Ackland, and J. Crain. Phys. Rev. B, 1995, 52, 15035.CrossRefGoogle Scholar
  22. 22.
    F. Occelli, P. Loubeyre, and R. Letoullec. Nat. Mater., 2003, 2, 151.CrossRefPubMedGoogle Scholar
  23. 23.
    H. K. Mao and R. J. Hemley. Nature, 1991, 351, 721.CrossRefGoogle Scholar
  24. 24.
    I. R. Shein, M. V. Kuznetsov, and A. N. Enyashin. J. Struct. Chem., 2016, 57(4), 808–811.CrossRefGoogle Scholar
  25. 25.
    N. F. Yudanov, A. V. Okotrub, L. G. Bulusheva, et al. J. Struct. Chem., 2011, 52(5), 903–909.CrossRefGoogle Scholar
  26. 26.
    Е.А. Belenkov, A. L. Ivanovskii, S. N. Ul′yanov, et al. J. Struct. Chem., 2005, 46, 961.CrossRefGoogle Scholar
  27. 27.
    Е. А. Belenkov and V. А. Greshnyakov. J. Struct. Chem., 2014, 55(3), 409–417.CrossRefGoogle Scholar
  28. 28.
    Е. А. Belenkov and V. А. Greshnyakov. Phys. Solid State, 2013, 55, 1754.CrossRefGoogle Scholar
  29. 29.
    Е. А. Belenkov and V. А. Greshnyakov. Phys. Solid State, 2015, 57, 205.CrossRefGoogle Scholar
  30. 30.
    Е. А. Belenkov and V. А. Greshnyakov. J. Exp. Theor. Phys., 2011, 140, 99.Google Scholar
  31. 31.
    Е. А. Belenkov and V. А. Greshnyakov. Phys. Solid State, 2015, 57, 2331.CrossRefGoogle Scholar
  32. 32.
    Е. А. Belenkov and I. V. Shakhova. Phys. Solid State, 2011, 53, 2385.CrossRefGoogle Scholar
  33. 33.
    K. А. Krylova, J. А. Baimova, S. V. Dmitriev, and R. R. Mulykov. Phys. Solid State, 2016, 58, 394.CrossRefGoogle Scholar
  34. 34.
    S. Stuart, A. Tutein, and J. Harrison. J. Chem. Phys., 2000, 112, 6472.CrossRefGoogle Scholar
  35. 35.
    R. T. Murzaev, D. V. Bachurin, E. A. Korznikova, and S. V. Dmitriev. Phys. Lett. A, 2017, 381, 1003.CrossRefGoogle Scholar
  36. 36.
    M. Jafary–Zadeh and Y.–W. Zhang. Sci. Rep., 2015, 5, 12848.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    S. P. Kiselev and Е. V. Zhirov. Phys. Mesomech., 2012, 15, 125.Google Scholar
  38. 38.
    N. D. Orechov and V. V. Stegailov. High Temp., 2014, 52, 198.CrossRefGoogle Scholar
  39. 39.
    A. E. Galashev, L. A. Elshina, and R. V. Muradymov. Russ. J. Phys. Chem., 2016, 90, 2444.CrossRefGoogle Scholar
  40. 40.
    J. T. Titantah and D. Lamoen. J. Phys.Condens. Matter., 2008, 20, 035216.CrossRefGoogle Scholar
  41. 41.
    A. Y. Belov and H. U. Jager. Diamond Relat. Mater., 2005, 14, 1014.CrossRefGoogle Scholar
  42. 42.
    S. Reinke and W. Kulisch. Surf. Coat. Technol., 1997, 97, 23.CrossRefGoogle Scholar
  43. 43.
    M. Park, J. Jang, C. Lee, and C. Lee. Appl. Phys. Lett., 2005, 86, 023110.CrossRefGoogle Scholar
  44. 44.
    A. Lobkovsky, S. Gentges, H. Li, D. Morse, and T. A. Witten. Science, 1995, 270, 1482.CrossRefGoogle Scholar
  45. 45.
    T. Tallinen, J. A. Astrom, and J. Timonen. Nat. Mater., 2009, 8, 25.CrossRefPubMedGoogle Scholar
  46. 46.
    K. Matan, R. Williams, T. Witten, and S. Nagel. Phys. Rev. Lett., 2002, 88, 076101.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Metals Superplasticity ProblemsRussian Academy of SciencesUfaRussia

Personalised recommendations